Skip to main content

Gamma-Probe for Locating the Source of Ionizing Radiation

  • Conference paper
  • First Online:
Biologically Inspired Cognitive Architectures (BICA) for Young Scientists (BICA 2017)

Abstract

The radionuclide diagnostics unit, described in the article, detects pathological changes of organs and systems of a person. The device is a portable detector of gamma rays that allows to diagnose superficial malignancies using radiopharmaceuticals injected into the body. The gamma probe uses crystal LaBr3:Ce as a scintillator and silicon photomultiplier SiPM as a photodetector. The focus of this paper is the improvement of the amplifier, which originally produced misshapen pulses unsuitable for energy discrimination. Using LTSPICE, a free circuit-modelling program, we performed extensive simulation of both the SiPM and the amplifier. From this work, we determined that high input impedance and unnecessarily high gain were the source of the distortion. Another amplifier better suited to the SiPM parameters was simulated and then prototyped.

The original version of this chapter was revised: For detailed information please see correction chapter. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-63940-6_51

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 12 October 2018

    A correction has been published.

References

  1. Cancer. Fact sheet N°297. World Health Organization (2015). http://www.who.int/mediacentre/factsheets/fs297/en. Accessed Feb 2015

  2. Blokhin, N.N., Peterson, B.B.: Clinical oncology, M. (1979)

    Google Scholar 

  3. Stewart, B., Wild, C.P. (eds.): World Cancer Report 2014. IARC Nonserial Publication, 630 p. (2014)

    Google Scholar 

  4. De Martel, C., Ferlay, J., Franceschi, S., et al.: Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncology 13, 607–615 (2012)

    Article  Google Scholar 

  5. Zubovsky, G.A.: Gammascintigraph, M. (1978)

    Google Scholar 

  6. Zedgenidze, G.A. (ed.): Clinical Radiology, vol. 4, Moscow (1985)

    Google Scholar 

  7. Gamma Probes. IntraMedical Imaging (2014). http://www.gammaprobe.com/products/gamma-probes

  8. Wengenmair, H., Kopp, J.: Gamma probes for sentinel lymph node localization: quality criteria, minimal requirements and quality of commercially available systems (2005). http://www.klinikum-augsburg.de/index.php/fuseaction/download/lrn_file/gammaprobes.pdf

  9. Da Costa, F.E., Rela, P.R., de Oliveira, I.B., Pereira, M.C.C., Hamada, M.M.: Surgical gamma probe with TlBr semiconductor for identification of sentinel lymph node. In: IEEE Nuclear Science Symposium Conference Record, pp. 2890–2894 (2005)

    Google Scholar 

  10. Wei, L., Chen, F., Zhang, X., Li, D., Yao, Z., Deng, L., Xiao, G.: 99mTc-dextran lymphoscintigraphy can detect sentinel lymph node in breast cancer patients. Exp. Therap. Med. 9(1), 112–116 (2015)

    Article  Google Scholar 

  11. Bogliolo, S., Marchiole, P., Sala, P., Giardina, E., Villa, G., Fulcheri, E., Menada, M.V.: Sentinel node mapping with radiotracer alone in vulvar cancer: a five year single-centre experience and literature review. Eur. J. Gynaecol. Oncol. 36(1), 10–15 (2015)

    Google Scholar 

  12. Endo, K., Ueno, T., Tsuji, A., Kondo, S., Wakisaka, N., Murono, S., Yoshizaki, T.: Sentinel node biopsy and tumor-targeted chemotherapy for oral squamous cell carcinoma. Oto-Rhino-Laryngol. Tokyo 56(5), 329–331 (2014)

    Google Scholar 

  13. Matheoud, R., Giorgione, R., Valzano, S., Sacchetti, G., Colombo, E., Brambilla, M.: Minimum acceptable sensitivity of intraoperative gamma probes used for sentinel lymph node detection in melanoma patients. Physica Med. 30(7), 822–826 (2014)

    Article  Google Scholar 

  14. Grigorenko, A., Panfilov, L., Smirnov, A., Starikovskiy, A., Rubin, D., Shulga, E., Sychev, N., Nikolaeva, A.: The existing gamma-probes review for searching functional increase and complex improvement possibilities. Biosci. Biotechnol. Res. Asia 12, 197–200 (2015)

    Google Scholar 

  15. Lebedev, G.N., Yagnyukova, A.K., Tolstaya, A.M., Bulychev, I.G.: Gamma-probe based on scintillation crystal and silicon photomultipliers for cancer detection. Int. J. Tomogr. Simul. 29(3), 92–103 (2016)

    Google Scholar 

  16. Romanova, S.: Nuclear medicine: status and prospects. Remedium (6), 8–20 (2013)

    Google Scholar 

  17. Georgiou, M.: Evaluation of an imaging gamma probe based on R8900U-00-C12 PSPMT. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 4020–4023 (2011)

    Google Scholar 

  18. Seifert, S., van Dam, H.T., Huizenga, J., Vinke, R., Dendooven, P., Lohner, H., Schaart, D.R.: Simulation of silicon photomultiplier signals. IEEE Trans. Nucl. Sci. 56(6), 3726–3733 (2009)

    Article  Google Scholar 

  19. Wangerin, K.A., Wang, G.-C., Kim, C., Danon, Y.: Passive electrical model of silicon photomultipliers. In: IEEE Nuclear Science Symposium Conference Record, pp. 4906–4913 (2008)

    Google Scholar 

  20. Yagnyukova, A., Mikhaylov, D., Khabibullin, T., Grigorenko, A., Leonid, P.: Gamma-probe for revealing cancerous cells. Stud. Ethno-Med. (2015)

    Google Scholar 

  21. Christillin, P.: Nuclear Compton scattering. J. Phys. G: Nucl. Phys. 12(9), 837–851 (1986)

    Article  Google Scholar 

  22. Compton scattering. http://en.academic.ru/dic.nsf/enwiki/35148

Download references

Acknowledgments

This work was supported by Competitiveness Growth Program of the Federal Autonomous Educational Institution of Higher Professional Education National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Tolstaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Khabibullin, T., Starikovskiy, A., Tolstaya, A. (2018). Gamma-Probe for Locating the Source of Ionizing Radiation. In: Samsonovich, A., Klimov, V. (eds) Biologically Inspired Cognitive Architectures (BICA) for Young Scientists. BICA 2017. Advances in Intelligent Systems and Computing, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-63940-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63940-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63939-0

  • Online ISBN: 978-3-319-63940-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics