Advertisement

Extreme Pulse Dynamics in Mode-Locked Lasers

Conference paper
  • 644 Downloads
Part of the Springer Proceedings in Physics book series (SPPHY, volume 199)

Abstract

This chapter is devoted to dissipative solitons that produce sharp peaks (spikes) on top of its high amplitude central part. The peak amplitude of these spikes can exceed several times the amplitude of the soliton base. This unusual phenomenon is found for solutions of the complex cubic-quintic Ginzburg-Landau equation (CGLE) in a special region of its free parameters. Depending on them, the spikes can appear chaotically or regularly. Both regimes are discussed in this chapter. The spikes with chaotic appearance can be considered as rogue waves and the probability density function confirms this. The solitons with spikes can also be considered as noise-like pulses that have been discussed in several recent publications without actually revealing the nature of the noise. The wide spectrum of these pulses suggests their application for generation of super-continuum directly out of lasers. The transition from regular to chaotic dynamics can be used in experiments to investigate this new interesting phenomenon.

Notes

Acknowledgements

The authors acknowledge the support of the Australian Research Council (DE130101432, DP140100265 and DP15102057). The work of JMSC was supported by MINECO under contract TEC2015-71127-C2-1-R, and by C.A.M. under contract S2013/MIT-2790. JMSC and NA acknowledge the support of the Volkswagen Foundation.

References

  1. 1.
    Smith, P.W.: Mode-locking of lasers. Proc. IEEE 58(9), 1342 (1970)Google Scholar
  2. 2.
    Grelu, P., Akhmediev, N.: Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Kutz, J.N.: Mode-locked soliton lasers. SIAM Rev. 48(4), 629–678 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Fermann, M.E., Hartl, I.: Ultrafast fibre lasers. Nat. Photon. 7, 868 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Brida, D., Krauss, G., Sell, A., Leitenstorfer, A.: Ultrabroadband Er: fiber lasers. Laser Photonics Rev. 8(3), 409–428 (2014)CrossRefGoogle Scholar
  6. 6.
    Sugioka, K., Cheng, Y.: Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)CrossRefGoogle Scholar
  7. 7.
    Gattass, R.R., Mazur, E.: Femtosecond laser micromachining in transparent materials. Nature Photon. 2, 219 (2008)Google Scholar
  8. 8.
    Chung, S.H., Mazur, E., Biophoton, J.: Surgical applications of femtosecond lasers 2, 557 (2009)Google Scholar
  9. 9.
    Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., Hajdu, J.: Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Fejer, M.M.: Nonlinear optical frequency conversion. Phys. Today 47, 25 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Kippenberg, T.J., Holzwarth, R.L., Diddams, S.A.: Microresonator based optical frequency combs. Science 332, 555 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Papp, S.B., Beha, K., Del’Haye, P., Quinlan, F., Lee, H., Vahala, K.J., Diddams, S.A.: Microresonator frequency comb optical clock. Optica 1, 10 (2014)CrossRefGoogle Scholar
  13. 13.
    Kim, I.J., Pae, K.H., Kim, C.M., Kim, H.T., Sung, J.H., Lee, S.K., Yu, T.J., Choi, I.W., Lee, C.L., Nam, K., Nickles, P.V., Jeong, T.M., Lee, J.: Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses. Phys. Rev. Lett. 111, 165003 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Muller, H.G.: Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B 74, s17 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Akhmediev, N., Soto-Crespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: CGLE approach. Phys. Rev. E 63, 056602 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Horowitz, M., Barad, Y., Silberberg, Y.: Noiselike pulses with a broadband spectrum generated from an erbium-doped fibre laser. Opt. Lett. 22, 799 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Zhao, L.M., Tang, D.Y., Cheng, T.H., Tam, H.Y., Lu, C.: 120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser. Opt. Commun. 281, 157–161 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Kang, J.U.: Broadband quasi-stationary pulses in mode-locked fiber ring laser. Opt. Commun. 182, 433–436 (2000)Google Scholar
  19. 19.
    Pottiez, O., Grajales-Coutino, R., Ibarra-Escamilla, B., Kuzin, E.A., Herndez-Garca, J.C.: Adjustable noiselike pulses from a figure-eight fiber laser. Appl. Opt. 50(25), E24–E31 (2011)Google Scholar
  20. 20.
    Horowitz, M., Silberberg, Y.: Control of noiselike pulse generation in erbium-doped fiber lasers. IEEE Photonics Technol. Lett. 10(10), 1389 (1998)Google Scholar
  21. 21.
    Lei, D., Yang, H., Dong, H., Wen, S., Xu, H., Zhang, J.: Effect of birefringence on the bandwidth of noise-like pulse in an erbium-doped fiber laser. J. Mod. Opt. 56(4), 572–576 (2009)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Hernandez-Garcia, J.C., Pottiez, O., Estudillo-Ayala, J.M.: Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser. Laser Phys. 22(1), 221–226 (2012)Google Scholar
  23. 23.
    Tang, D.Y., Zhao, L.M., Zhao, B.: Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt. Express 13(7), 2289–2294 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Takushima, Y., Yasunaka, K., Ozeki, Y., Kikuchi, K.: 87 nm bandwidth noise-like pulse generation from erbium-doped fibre laser. Electron. Lett. 41(7), 399–400 (2005)CrossRefGoogle Scholar
  25. 25.
    Zaytsev, A., Lin, C.-H., You, Y.-J., Chung, C.-C., Wang, C.-L., Pan, C.-L.: Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers. Opt. Express 21(13), 16056–16062 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Schreiber, T., Ortaç, B., Limpert, J., Tünnermann, A.: On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations. Opt. Express 13, 8252 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Akhmediev, N., Ankiewicz, A.: Dissipative Solitons. Lecture Notes in Physics, Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  28. 28.
    Descalzi, O., Akhmediev, N., Brand, H.R.: Exploding dissipative solitons in reaction-diffusion systems. Phys. Rev. E 88, 042911 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Tlidi, M., Lefever, R., Vladimirov, A.: On Vegetation Clustering, Localized Bare Soil Spots and Fairy Circles, Chapter in the book [31], pp. 381Google Scholar
  30. 30.
    Bordeu, I., Clerc, M.G., Couteron, P., Lefever, R., Tlidi, M.: Self-replication of localized vegetation patches in scarce environments. Sci. Rep. 6, 33703 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Akhmediev, N., Ankiewicz, A.: Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics. Springer, Berlin (2008)Google Scholar
  32. 32.
    Akhmediev, N.: General theory of solitons. In: Boardman, A.D., Sukhorukov, A.P. (eds.) Soliton-Driven Photonics, pp. 371–395. Kluver Academic Publishers, Netherlands (2001)CrossRefGoogle Scholar
  33. 33.
    Vázquez-Zuniga, L.A., Jeong, Y.: Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement. IEEE Photon. Technol. Lett. 24, 1549 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Sobon, G., Sotor, J., Martynkien, T., Abramski, K.M.: Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser. Opt. Express 24, 6156 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Chen, Y., Wu, M., Tang, P., Chen, S., Du, J., Jiang, G., Li, Y., Zhao, C., Zhang, H., Wen, S.: The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys. Lett. 11, 055101 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Osborne, A.: Nonlinear ocean waves and the inverse scattering transform. Elsevier, Amsterdam (2010)zbMATHGoogle Scholar
  37. 37.
    Yuen, H.C., Lake, B.M.: Nonlinear deep water waves: theory and experiment. Phys. Fluids 18, 956–960 (1975)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Onorato, M., Osborne, A.R., Serio, M., Bertone, S.: Freak waves in random oceanic sea states. Phys. Rev. Lett. 86, 5831–5834 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Akhmediev, N., Pelinovsky, E. (eds.): “Rogue waves—towards a unifying concept?: Discussions and debates”, Eur. Phys. J. Spec. Top. 185, 266 (2010)Google Scholar
  41. 41.
    Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Zhen-Ya, Y.: Financial rogue waves. Commun. Theor. Phys. 54(5), 947–949 (2010)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11–22 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983)CrossRefzbMATHGoogle Scholar
  46. 46.
    Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6(10), 790–795 (2010)CrossRefGoogle Scholar
  47. 47.
    Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Chabchoub, A., Hoffmann, N.P., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015 (2012)Google Scholar
  49. 49.
    Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A., Devine, N.: Early detection of rogue waves in a chaotic wave field. Phys. Lett. A 375, 2999–3001 (2011)ADSCrossRefzbMATHGoogle Scholar
  51. 51.
    Soto-Crespo, J.M., Devine, N., Hoffmann, N.P., Akhmediev, N.: Rogue waves of the Sasa-Satsuma equation in a chaotic wave field. Phys. Rev. E 90, 032902 (2014)ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    Soto-Crespo, J.M., Devine, N., Akhmediev, N.: Integrable turbulence and rogue waves: breathers or solitons? Phys. Rev. Lett. 116, 103901 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    Akhmediev, N., Soto-Crespo, J.M., Devine, N.: Breather turbulence versus soliton turbulence: rogue waves, probability density functions, and spectral features. Phys. Rev. E 94, 022212 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Taki, M., Mussot, A., Kudlinski, A., Louvergneaux, E., Kolobov, M., Douay, M.: Third-order dispersion for generating optical rogue solitons. Phys. Lett. A 374(4), 691–695 (2010)ADSCrossRefzbMATHGoogle Scholar
  55. 55.
    Genty, G., DeSterke, C.M., Bang, O., Dias, F., Akhmediev, N., Dudley, J.M.: Collisions and turbulence in optical rogue wave formation. Phys. Lett. A 373, 989–996 (2010)ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Could rogue waves be used as efficient weapons against enemy ships? Eur. Phy. J. Spec. Top. 185, 259–266 (2010)CrossRefGoogle Scholar
  57. 57.
    Montina, A., Bortolozzo, U., Residori, S., Arecchi, F.T.: Non-Gaussian statistics and extreme waves in a nonlinear optical cavity phys. Phys. Rev. Lett. 103, 173901 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Arecchi, F.T., Bortolozzo, U., Montina, A., Residori, S.: Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys. Rev. Lett. 106, 153901 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    Yang, Z.P., Zhong, W.-P., Belić, M.: 2D optical rogue waves in self-focusing Kerr-type media with spatially modulated coefficients. Laser Phys. 258, 085402 (2015)Google Scholar
  60. 60.
    Kundu, A., Mukherjee, A., Naskar, T.: Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents. Proc. R. Soc. A 470, 20130576 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Dubard, P., Matveev, V.B.: Multi-rogue waves solutions: from the NLS to the KP-I equation, Nonlinearity 26(12), R93 (2013)Google Scholar
  62. 62.
    Onorato, M., Residori, S., Bortolozzo, U., Arecchi, T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528(2), 47–89 (2013)ADSCrossRefMathSciNetGoogle Scholar
  63. 63.
    Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)ADSCrossRefGoogle Scholar
  64. 64.
    Akhmediev, N., Kibler, B., Baronio, F., Belić, M., Zhong, W.-P., Zhang, Y., Chang, W., Soto-Crespo, J.M., Vouzas, P., Grelu, P., Lecaplain, C., Hammani, K., Rica, S., Picozzi, A., Tlidi, M., Panajotov, K., Mussot, A., Bendahmane, A., Szriftgiser, P., Genty, G., Dudley, J., Kudlinski, A., Demircan, A., Morgner, U., Amiraranashvili, S., Bree, C., Steinmeyer, G., Masoller, C., Broderick, N.G.R., Runge, A.F.J., Erkintalo, M., Residori, S., Bortolozzo, U., Arecchi, F.T., Wabnitz, S., Tiofack, C.G., Coulibaly, S., Taki, M.: Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    Soto-Crespo, J.M., Grelu, P., Akhmediev, N.: Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers. Phys. Rev. E 84, 016604 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    Zaviyalov, A., Egorov, O., Iliew, R., Lederer, F.: Rogue waves in mode-locked fiber lasers. Phys. Rev. A 85, 013828 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Lecaplain, C., Grelu, P., Soto-Crespo, J.M., Akhmediev, N.: Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108, 233901 (2012)ADSCrossRefGoogle Scholar
  68. 68.
    Lecaplain, C., Grelu, P., Soto-Crespo, J.M., Akhmediev, N.: Dissipative rogue wave generation in multiple-pulsing mode-locked fiber laser. J. Optics 15, 064005 (2013)ADSCrossRefGoogle Scholar
  69. 69.
    Chang, W., Akhmediev, N.: Exploding solitons and rogue waves in optical cavities. In: Grelu, Ph. (ed.) Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers. Wiley-VCH (2016)Google Scholar
  70. 70.
    Peng, J., Tarasov, N., Sugavanam, S., Churkin, D.: Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser. Opt. Express, 24(19), 24256 (2016)Google Scholar
  71. 71.
    Jalali, B., Solli, D., Goda, K., Tsia, K., Ropers, C.: Real-time measurements, rare events and photon economics. Eur. Phys. J. Spec. Top. 185, 145–157 (2010)CrossRefGoogle Scholar
  72. 72.
    Bhushan, A., Coppinger, F., Jalali, B.: Time-stretched analogue-to-digital conversion. Electron. Lett. 34, 1081–1082 (1998)CrossRefGoogle Scholar
  73. 73.
    Coppinger, F., Bhushan, A., Jalali, B.: Photonic time stretch and its application to analog-to-digital conversion. IEEE Trans. Microw. Theory Tech. 47, 1309–1314 (1999)ADSCrossRefGoogle Scholar
  74. 74.
    Suret, P., El Koussaifi, R., Tikan, A., Evain, C., Randoux, S., Szwaj, C., Bielawski, S.: Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    Närhi, M., Wetzel, B., Billet, C., Toenger, S., Sylvestre, T., Merolla, J.-M., Morandotti, R., Dias, F., Genty, G., Dudley, J.M.: Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun. (2016). https://doi.org/10.1038/ncomms13675
  76. 76.
    Chang, W., Soto-Crespo, J.M., Vouzas, P., Akhmediev, N.: Spiny solitons and noise-like pulses. J. Opt. Soc. Am. 32, 1377–1383 (2015)ADSCrossRefGoogle Scholar
  77. 77.
    Chang, W., Soto-Crespo, J.M., Vouzas, P., Akhmediev, N.: Extreme amplitude spikes in a laser model described by the complex Ginzburg-Landau equation. Opt. Lett. 40, 1377–1383 (2015)Google Scholar
  78. 78.
    Chang, W., Soto-Crespo, J.M., Vouzas, P., Akhmediev, N.: Extreme soliton pulsations in dissipative systems. Phys. Rev. E 92, 022926 (2015)ADSCrossRefMathSciNetGoogle Scholar
  79. 79.
    Tsoy, E., Akhmediev, N.: Bifurcations from stationary to pulsating solitons in the cubic–quintic complex Ginzburg-Landau equation. Phys. Lett. A 343, 417–422 (2005)ADSCrossRefzbMATHGoogle Scholar
  80. 80.
    Tsoy, E., Ankiewicz, A., Akhmediev, N.: Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Phys. Rev. E 73, 036621 (1–10) (2006)Google Scholar
  81. 81.
    Ankiewicz, A., Akhmediev, N.: Comparison of Lagrangian approach and method of moments for reducing dimensionality of soliton dynamical systems. Chaos 18, 033129 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  82. 82.
    Kärtner, F.X.: Few-Cycle Laser Pulse Generation and Its Applications. Springer, Berlin-Heidelberg (2004)CrossRefGoogle Scholar
  83. 83.
    Haus, H.A.: Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 46, 3049 (1975)ADSCrossRefGoogle Scholar
  84. 84.
    Haus, H.A.: Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000)CrossRefGoogle Scholar
  85. 85.
    Moores, J.D.: On the Ginzburg-Landau laser mode-locking model with fifth-oder saturable absorber term. Opt. Commun. 96, 65 (1993)ADSCrossRefGoogle Scholar
  86. 86.
    Korytin, A.I., Kryachko, A.Y., Sergeev, A.M.: Dissipative solitons in the complex Ginzburg-Landau equation for femtosecond lasers. Radiophys. Quantum Electron. 44, 428 (2001)CrossRefGoogle Scholar
  87. 87.
    Kovalsky, M.G., Hnilo, A.A., Tredicce, J.R.: Extreme events in the Ti:sapphire laser. Opt. Lett. 36, 4449–4451 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    Runge, A.F.J., Aguergaray, C., Broderick, N.G.R., Erkintalo, M.: Raman rogue waves in a partially mode-locked fiber laser. Opt. Lett. 39, 319 (2014)ADSCrossRefGoogle Scholar
  89. 89.
    Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    Kobtsev, S., Kukarin, S., Smirnov, S., Turitsyn, S., Latkin, A.: Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Opt. Express 17, 20707 (2009)ADSCrossRefGoogle Scholar
  91. 91.
    Smirnov, S., Kobtsev, S., Kukarin, S., Ivanenko, A.: Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. Opt. Express 20, 27447 (2012)ADSCrossRefGoogle Scholar
  92. 92.
    Wang, Q., Chen, T., Zhang, B., Heberle, A.P., Chen, K.P.: All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes. Opt. Lett. 36, 3750 (2011)ADSCrossRefGoogle Scholar
  93. 93.
    Linden, S., Giessen, H., Kuhl, J.: XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses. Phys. Stat. Sol. B 206, 119–124 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Optical Sciences Group, Research School of Physics and EngineeringThe Australian National UniversityActonAustralia
  2. 2.Instituto de ÓpticaC.S.I.C.MadridSpain

Personalised recommendations