Skip to main content

Extreme Pulse Dynamics in Mode-Locked Lasers

  • Conference paper
  • First Online:
Recent Trends in Applied Nonlinear Mechanics and Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 199))

  • 778 Accesses

Abstract

This chapter is devoted to dissipative solitons that produce sharp peaks (spikes) on top of its high amplitude central part. The peak amplitude of these spikes can exceed several times the amplitude of the soliton base. This unusual phenomenon is found for solutions of the complex cubic-quintic Ginzburg-Landau equation (CGLE) in a special region of its free parameters. Depending on them, the spikes can appear chaotically or regularly. Both regimes are discussed in this chapter. The spikes with chaotic appearance can be considered as rogue waves and the probability density function confirms this. The solitons with spikes can also be considered as noise-like pulses that have been discussed in several recent publications without actually revealing the nature of the noise. The wide spectrum of these pulses suggests their application for generation of super-continuum directly out of lasers. The transition from regular to chaotic dynamics can be used in experiments to investigate this new interesting phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, P.W.: Mode-locking of lasers. Proc. IEEE 58(9), 1342 (1970)

    Google Scholar 

  2. Grelu, P., Akhmediev, N.: Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84 (2012)

    Article  ADS  Google Scholar 

  3. Kutz, J.N.: Mode-locked soliton lasers. SIAM Rev. 48(4), 629–678 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Fermann, M.E., Hartl, I.: Ultrafast fibre lasers. Nat. Photon. 7, 868 (2013)

    Article  ADS  Google Scholar 

  5. Brida, D., Krauss, G., Sell, A., Leitenstorfer, A.: Ultrabroadband Er: fiber lasers. Laser Photonics Rev. 8(3), 409–428 (2014)

    Article  Google Scholar 

  6. Sugioka, K., Cheng, Y.: Ultrafast lasers—reliable tools for advanced materials processing. Light Sci. Appl. 3, e149 (2014)

    Article  Google Scholar 

  7. Gattass, R.R., Mazur, E.: Femtosecond laser micromachining in transparent materials. Nature Photon. 2, 219 (2008)

    Google Scholar 

  8. Chung, S.H., Mazur, E., Biophoton, J.: Surgical applications of femtosecond lasers 2, 557 (2009)

    Google Scholar 

  9. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., Hajdu, J.: Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752 (2000)

    Article  ADS  Google Scholar 

  10. Fejer, M.M.: Nonlinear optical frequency conversion. Phys. Today 47, 25 (1994)

    Article  ADS  Google Scholar 

  11. Kippenberg, T.J., Holzwarth, R.L., Diddams, S.A.: Microresonator based optical frequency combs. Science 332, 555 (2011)

    Article  ADS  Google Scholar 

  12. Papp, S.B., Beha, K., Del’Haye, P., Quinlan, F., Lee, H., Vahala, K.J., Diddams, S.A.: Microresonator frequency comb optical clock. Optica 1, 10 (2014)

    Article  Google Scholar 

  13. Kim, I.J., Pae, K.H., Kim, C.M., Kim, H.T., Sung, J.H., Lee, S.K., Yu, T.J., Choi, I.W., Lee, C.L., Nam, K., Nickles, P.V., Jeong, T.M., Lee, J.: Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses. Phys. Rev. Lett. 111, 165003 (2013)

    Article  ADS  Google Scholar 

  14. Muller, H.G.: Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B 74, s17 (2002)

    Article  ADS  Google Scholar 

  15. Akhmediev, N., Soto-Crespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: CGLE approach. Phys. Rev. E 63, 056602 (2001)

    Article  ADS  Google Scholar 

  16. Horowitz, M., Barad, Y., Silberberg, Y.: Noiselike pulses with a broadband spectrum generated from an erbium-doped fibre laser. Opt. Lett. 22, 799 (1997)

    Article  ADS  Google Scholar 

  17. Zhao, L.M., Tang, D.Y., Cheng, T.H., Tam, H.Y., Lu, C.: 120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser. Opt. Commun. 281, 157–161 (2008)

    Article  ADS  Google Scholar 

  18. Kang, J.U.: Broadband quasi-stationary pulses in mode-locked fiber ring laser. Opt. Commun. 182, 433–436 (2000)

    Google Scholar 

  19. Pottiez, O., Grajales-Coutino, R., Ibarra-Escamilla, B., Kuzin, E.A., Herndez-Garca, J.C.: Adjustable noiselike pulses from a figure-eight fiber laser. Appl. Opt. 50(25), E24–E31 (2011)

    Google Scholar 

  20. Horowitz, M., Silberberg, Y.: Control of noiselike pulse generation in erbium-doped fiber lasers. IEEE Photonics Technol. Lett. 10(10), 1389 (1998)

    Google Scholar 

  21. Lei, D., Yang, H., Dong, H., Wen, S., Xu, H., Zhang, J.: Effect of birefringence on the bandwidth of noise-like pulse in an erbium-doped fiber laser. J. Mod. Opt. 56(4), 572–576 (2009)

    Article  ADS  MATH  Google Scholar 

  22. Hernandez-Garcia, J.C., Pottiez, O., Estudillo-Ayala, J.M.: Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser. Laser Phys. 22(1), 221–226 (2012)

    Google Scholar 

  23. Tang, D.Y., Zhao, L.M., Zhao, B.: Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt. Express 13(7), 2289–2294 (2005)

    Article  ADS  Google Scholar 

  24. Takushima, Y., Yasunaka, K., Ozeki, Y., Kikuchi, K.: 87 nm bandwidth noise-like pulse generation from erbium-doped fibre laser. Electron. Lett. 41(7), 399–400 (2005)

    Article  Google Scholar 

  25. Zaytsev, A., Lin, C.-H., You, Y.-J., Chung, C.-C., Wang, C.-L., Pan, C.-L.: Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers. Opt. Express 21(13), 16056–16062 (2013)

    Article  ADS  Google Scholar 

  26. Schreiber, T., Ortaç, B., Limpert, J., Tünnermann, A.: On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations. Opt. Express 13, 8252 (2007)

    Article  ADS  Google Scholar 

  27. Akhmediev, N., Ankiewicz, A.: Dissipative Solitons. Lecture Notes in Physics, Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  28. Descalzi, O., Akhmediev, N., Brand, H.R.: Exploding dissipative solitons in reaction-diffusion systems. Phys. Rev. E 88, 042911 (2013)

    Article  ADS  Google Scholar 

  29. Tlidi, M., Lefever, R., Vladimirov, A.: On Vegetation Clustering, Localized Bare Soil Spots and Fairy Circles, Chapter in the book [31], pp. 381

    Google Scholar 

  30. Bordeu, I., Clerc, M.G., Couteron, P., Lefever, R., Tlidi, M.: Self-replication of localized vegetation patches in scarce environments. Sci. Rep. 6, 33703 (2016)

    Article  ADS  Google Scholar 

  31. Akhmediev, N., Ankiewicz, A.: Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics. Springer, Berlin (2008)

    Google Scholar 

  32. Akhmediev, N.: General theory of solitons. In: Boardman, A.D., Sukhorukov, A.P. (eds.) Soliton-Driven Photonics, pp. 371–395. Kluver Academic Publishers, Netherlands (2001)

    Chapter  Google Scholar 

  33. Vázquez-Zuniga, L.A., Jeong, Y.: Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement. IEEE Photon. Technol. Lett. 24, 1549 (2012)

    Article  ADS  Google Scholar 

  34. Sobon, G., Sotor, J., Martynkien, T., Abramski, K.M.: Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser. Opt. Express 24, 6156 (2016)

    Article  ADS  Google Scholar 

  35. Chen, Y., Wu, M., Tang, P., Chen, S., Du, J., Jiang, G., Li, Y., Zhao, C., Zhang, H., Wen, S.: The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber. Laser Phys. Lett. 11, 055101 (2014)

    Article  ADS  Google Scholar 

  36. Osborne, A.: Nonlinear ocean waves and the inverse scattering transform. Elsevier, Amsterdam (2010)

    MATH  Google Scholar 

  37. Yuen, H.C., Lake, B.M.: Nonlinear deep water waves: theory and experiment. Phys. Fluids 18, 956–960 (1975)

    Article  ADS  MATH  Google Scholar 

  38. Onorato, M., Osborne, A.R., Serio, M., Bertone, S.: Freak waves in random oceanic sea states. Phys. Rev. Lett. 86, 5831–5834 (2001)

    Article  ADS  Google Scholar 

  39. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    Article  ADS  Google Scholar 

  40. Akhmediev, N., Pelinovsky, E. (eds.): “Rogue waves—towards a unifying concept?: Discussions and debates”, Eur. Phys. J. Spec. Top. 185, 266 (2010)

    Google Scholar 

  41. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Article  ADS  Google Scholar 

  42. Zhen-Ya, Y.: Financial rogue waves. Commun. Theor. Phys. 54(5), 947–949 (2010)

    Article  ADS  MATH  Google Scholar 

  43. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  ADS  MATH  Google Scholar 

  44. Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11–22 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983)

    Article  MATH  Google Scholar 

  46. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6(10), 790–795 (2010)

    Article  Google Scholar 

  47. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  ADS  Google Scholar 

  48. Chabchoub, A., Hoffmann, N.P., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015 (2012)

    Google Scholar 

  49. Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012)

    Article  ADS  Google Scholar 

  50. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A., Devine, N.: Early detection of rogue waves in a chaotic wave field. Phys. Lett. A 375, 2999–3001 (2011)

    Article  ADS  MATH  Google Scholar 

  51. Soto-Crespo, J.M., Devine, N., Hoffmann, N.P., Akhmediev, N.: Rogue waves of the Sasa-Satsuma equation in a chaotic wave field. Phys. Rev. E 90, 032902 (2014)

    Article  ADS  MATH  Google Scholar 

  52. Soto-Crespo, J.M., Devine, N., Akhmediev, N.: Integrable turbulence and rogue waves: breathers or solitons? Phys. Rev. Lett. 116, 103901 (2016)

    Article  ADS  Google Scholar 

  53. Akhmediev, N., Soto-Crespo, J.M., Devine, N.: Breather turbulence versus soliton turbulence: rogue waves, probability density functions, and spectral features. Phys. Rev. E 94, 022212 (2016)

    Article  ADS  Google Scholar 

  54. Taki, M., Mussot, A., Kudlinski, A., Louvergneaux, E., Kolobov, M., Douay, M.: Third-order dispersion for generating optical rogue solitons. Phys. Lett. A 374(4), 691–695 (2010)

    Article  ADS  MATH  Google Scholar 

  55. Genty, G., DeSterke, C.M., Bang, O., Dias, F., Akhmediev, N., Dudley, J.M.: Collisions and turbulence in optical rogue wave formation. Phys. Lett. A 373, 989–996 (2010)

    Article  ADS  MATH  Google Scholar 

  56. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Could rogue waves be used as efficient weapons against enemy ships? Eur. Phy. J. Spec. Top. 185, 259–266 (2010)

    Article  Google Scholar 

  57. Montina, A., Bortolozzo, U., Residori, S., Arecchi, F.T.: Non-Gaussian statistics and extreme waves in a nonlinear optical cavity phys. Phys. Rev. Lett. 103, 173901 (2009)

    Article  ADS  Google Scholar 

  58. Arecchi, F.T., Bortolozzo, U., Montina, A., Residori, S.: Granularity and inhomogeneity are the joint generators of optical rogue waves. Phys. Rev. Lett. 106, 153901 (2011)

    Article  ADS  Google Scholar 

  59. Yang, Z.P., Zhong, W.-P., Belić, M.: 2D optical rogue waves in self-focusing Kerr-type media with spatially modulated coefficients. Laser Phys. 258, 085402 (2015)

    Google Scholar 

  60. Kundu, A., Mukherjee, A., Naskar, T.: Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents. Proc. R. Soc. A 470, 20130576 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions: from the NLS to the KP-I equation, Nonlinearity 26(12), R93 (2013)

    Google Scholar 

  62. Onorato, M., Residori, S., Bortolozzo, U., Arecchi, T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528(2), 47–89 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  63. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)

    Article  ADS  Google Scholar 

  64. Akhmediev, N., Kibler, B., Baronio, F., Belić, M., Zhong, W.-P., Zhang, Y., Chang, W., Soto-Crespo, J.M., Vouzas, P., Grelu, P., Lecaplain, C., Hammani, K., Rica, S., Picozzi, A., Tlidi, M., Panajotov, K., Mussot, A., Bendahmane, A., Szriftgiser, P., Genty, G., Dudley, J., Kudlinski, A., Demircan, A., Morgner, U., Amiraranashvili, S., Bree, C., Steinmeyer, G., Masoller, C., Broderick, N.G.R., Runge, A.F.J., Erkintalo, M., Residori, S., Bortolozzo, U., Arecchi, F.T., Wabnitz, S., Tiofack, C.G., Coulibaly, S., Taki, M.: Roadmap on optical rogue waves and extreme events. J. Opt. 18, 063001 (2016)

    Article  ADS  Google Scholar 

  65. Soto-Crespo, J.M., Grelu, P., Akhmediev, N.: Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers. Phys. Rev. E 84, 016604 (2011)

    Article  ADS  Google Scholar 

  66. Zaviyalov, A., Egorov, O., Iliew, R., Lederer, F.: Rogue waves in mode-locked fiber lasers. Phys. Rev. A 85, 013828 (2012)

    Article  ADS  Google Scholar 

  67. Lecaplain, C., Grelu, P., Soto-Crespo, J.M., Akhmediev, N.: Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108, 233901 (2012)

    Article  ADS  Google Scholar 

  68. Lecaplain, C., Grelu, P., Soto-Crespo, J.M., Akhmediev, N.: Dissipative rogue wave generation in multiple-pulsing mode-locked fiber laser. J. Optics 15, 064005 (2013)

    Article  ADS  Google Scholar 

  69. Chang, W., Akhmediev, N.: Exploding solitons and rogue waves in optical cavities. In: Grelu, Ph. (ed.) Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers. Wiley-VCH (2016)

    Google Scholar 

  70. Peng, J., Tarasov, N., Sugavanam, S., Churkin, D.: Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser. Opt. Express, 24(19), 24256 (2016)

    Google Scholar 

  71. Jalali, B., Solli, D., Goda, K., Tsia, K., Ropers, C.: Real-time measurements, rare events and photon economics. Eur. Phys. J. Spec. Top. 185, 145–157 (2010)

    Article  Google Scholar 

  72. Bhushan, A., Coppinger, F., Jalali, B.: Time-stretched analogue-to-digital conversion. Electron. Lett. 34, 1081–1082 (1998)

    Article  Google Scholar 

  73. Coppinger, F., Bhushan, A., Jalali, B.: Photonic time stretch and its application to analog-to-digital conversion. IEEE Trans. Microw. Theory Tech. 47, 1309–1314 (1999)

    Article  ADS  Google Scholar 

  74. Suret, P., El Koussaifi, R., Tikan, A., Evain, C., Randoux, S., Szwaj, C., Bielawski, S.: Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016)

    Article  ADS  Google Scholar 

  75. Närhi, M., Wetzel, B., Billet, C., Toenger, S., Sylvestre, T., Merolla, J.-M., Morandotti, R., Dias, F., Genty, G., Dudley, J.M.: Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun. (2016). https://doi.org/10.1038/ncomms13675

  76. Chang, W., Soto-Crespo, J.M., Vouzas, P., Akhmediev, N.: Spiny solitons and noise-like pulses. J. Opt. Soc. Am. 32, 1377–1383 (2015)

    Article  ADS  Google Scholar 

  77. Chang, W., Soto-Crespo, J.M., Vouzas, P., Akhmediev, N.: Extreme amplitude spikes in a laser model described by the complex Ginzburg-Landau equation. Opt. Lett. 40, 1377–1383 (2015)

    Google Scholar 

  78. Chang, W., Soto-Crespo, J.M., Vouzas, P., Akhmediev, N.: Extreme soliton pulsations in dissipative systems. Phys. Rev. E 92, 022926 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  79. Tsoy, E., Akhmediev, N.: Bifurcations from stationary to pulsating solitons in the cubic–quintic complex Ginzburg-Landau equation. Phys. Lett. A 343, 417–422 (2005)

    Article  ADS  MATH  Google Scholar 

  80. Tsoy, E., Ankiewicz, A., Akhmediev, N.: Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Phys. Rev. E 73, 036621 (1–10) (2006)

    Google Scholar 

  81. Ankiewicz, A., Akhmediev, N.: Comparison of Lagrangian approach and method of moments for reducing dimensionality of soliton dynamical systems. Chaos 18, 033129 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  82. Kärtner, F.X.: Few-Cycle Laser Pulse Generation and Its Applications. Springer, Berlin-Heidelberg (2004)

    Book  Google Scholar 

  83. Haus, H.A.: Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 46, 3049 (1975)

    Article  ADS  Google Scholar 

  84. Haus, H.A.: Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000)

    Article  Google Scholar 

  85. Moores, J.D.: On the Ginzburg-Landau laser mode-locking model with fifth-oder saturable absorber term. Opt. Commun. 96, 65 (1993)

    Article  ADS  Google Scholar 

  86. Korytin, A.I., Kryachko, A.Y., Sergeev, A.M.: Dissipative solitons in the complex Ginzburg-Landau equation for femtosecond lasers. Radiophys. Quantum Electron. 44, 428 (2001)

    Article  Google Scholar 

  87. Kovalsky, M.G., Hnilo, A.A., Tredicce, J.R.: Extreme events in the Ti:sapphire laser. Opt. Lett. 36, 4449–4451 (2011)

    Article  ADS  Google Scholar 

  88. Runge, A.F.J., Aguergaray, C., Broderick, N.G.R., Erkintalo, M.: Raman rogue waves in a partially mode-locked fiber laser. Opt. Lett. 39, 319 (2014)

    Article  ADS  Google Scholar 

  89. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755 (2014)

    Article  ADS  Google Scholar 

  90. Kobtsev, S., Kukarin, S., Smirnov, S., Turitsyn, S., Latkin, A.: Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Opt. Express 17, 20707 (2009)

    Article  ADS  Google Scholar 

  91. Smirnov, S., Kobtsev, S., Kukarin, S., Ivanenko, A.: Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. Opt. Express 20, 27447 (2012)

    Article  ADS  Google Scholar 

  92. Wang, Q., Chen, T., Zhang, B., Heberle, A.P., Chen, K.P.: All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes. Opt. Lett. 36, 3750 (2011)

    Article  ADS  Google Scholar 

  93. Linden, S., Giessen, H., Kuhl, J.: XFROG—a new method for amplitude and phase characterization of weak ultrashort pulses. Phys. Stat. Sol. B 206, 119–124 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Australian Research Council (DE130101432, DP140100265 and DP15102057). The work of JMSC was supported by MINECO under contract TEC2015-71127-C2-1-R, and by C.A.M. under contract S2013/MIT-2790. JMSC and NA acknowledge the support of the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail Akhmediev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, W., Soto-Crespo, J.M., Vouzas, P., Akhmediev, N. (2018). Extreme Pulse Dynamics in Mode-Locked Lasers. In: Belhaq, M. (eds) Recent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-319-63937-6_9

Download citation

Publish with us

Policies and ethics