Skip to main content

Linearization of Nonlinear Resonances Through the Addition of Intentional Nonlinearities

  • Conference paper
  • First Online:
Recent Trends in Applied Nonlinear Mechanics and Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 199))

  • 697 Accesses

Abstract

Important properties of linear systems, such as force-displacement proportionality and invariance of the resonant frequency, are not satisfied by nonlinear systems. The objective of this paper is to demonstrate that the intentional addition of properly tuned nonlinearities to a nonlinear system allows to retrieve those linear properties, enlarging the range over which a nonlinear system behaves linearly. Analytical findings are validated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Article  ADS  Google Scholar 

  2. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986)

    Article  ADS  Google Scholar 

  3. Charlet, B., Lévine, J., Marino, R.: On dynamic feedback linearization. Syst. Control Lett. 13(2), 143–151 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dai, M.D., Eom, K., Kim, C.W.: Nanomechanical mass detection using nonlinear oscillations. Appl. Phys. Lett. 95(20), 203104 (2009)

    Article  ADS  Google Scholar 

  5. Dou, S., Strachan, B.S., Shaw, S.W., Jensen, J.S.: Structural optimization for nonlinear dynamic response. Philos. Trans. R. Soc. A 373:2051, 20140,408 (2015)

    Google Scholar 

  6. Habib, G., Grappasonni, C., Kerschen, G.: Passive linearization of nonlinear resonances. J. Appl. Phys. 120(4), 044901 (2016)

    Article  ADS  Google Scholar 

  7. Habib, G., Kerschen, G.: A principle of similarity for nonlinear vibration absorbers. Phys. D: Nonlinear Phenom. 332, 1–8 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kacem, N., Hentz, S.: Bifurcation topology tuning of a mixed behavior in nonlinear micromechanical resonators. Appl. Phys. Lett. 95(18), 183104 (2009)

    Article  ADS  Google Scholar 

  9. Kovacic, I., Rand, R.: About a class of nonlinear oscillators with amplitude-independent frequency. Nonlinear Dyn. 74(1–2), 455–465 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kozinsky, I., Postma, H.C., Bargatin, I., Roukes, M.: Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88(25), 253101 (2006)

    Article  ADS  Google Scholar 

  11. Mayet, J., Ulbrich, H.: Tautochronic centrifugal pendulum vibration absorbers: general design and analysis. J. Sound Vib. 333(3), 711–729 (2014)

    Article  ADS  Google Scholar 

  12. Mittal, S., Menq, C.H.: Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme. Mech. IEEE/ASME Trans. 2(4), 268–280 (1997)

    Article  Google Scholar 

  13. Nguyen, C.T.: Frequency-selective mems for miniaturized low-power communication devices. Microw. Theory Tech. IEEE Trans. 47(8), 1486–1503 (1999)

    Article  ADS  Google Scholar 

  14. Park, S.J., Reines, I., Patel, C., Rebeiz, G.M.: High-rf-mems 4–6-GHz tunable evanescent-mode cavity filter. Microw. Theory Tech. IEEE Trans. 58(2), 381–389 (2010)

    Article  ADS  Google Scholar 

  15. Yurke, B., Greywall, D., Pargellis, A., Busch, P.: Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. Phys. Rev. A 51(5), 4211 (1995)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the European Union (ERC Starting Grant No. Vib 307265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Habib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Habib, G., Kerschen, G. (2018). Linearization of Nonlinear Resonances Through the Addition of Intentional Nonlinearities. In: Belhaq, M. (eds) Recent Trends in Applied Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-319-63937-6_12

Download citation

Publish with us

Policies and ethics