Skip to main content

CRISPR: From Prokaryotic Immune Systems to Plant Genome Editing Tools

  • Chapter
  • First Online:
Precision Medicine, CRISPR, and Genome Engineering

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) system is a prokaryotic adaptive immune system that has the ability to identify specific locations on the bacteriophage (phage) genome to create breaks in it, and internalize the phage genome fragments in its own genome as CRISPR arrays for memory-dependent resistance. Although CRISPR has been used in the dairy industry for a long time, it recently gained importance in the field of genome editing because of its ability to precisely target locations in a genome. This system has further been modified to locate and target any region of a genome of choice due to modifications in the components of the system. By changing the nucleotide sequence of the 20-nucleotide target sequence in the guide RNA, targeting any location is possible. It has found an application in the modification of plant genomes with its ability to generate mutations and insertions, thus helping to create new varieties of plants. With the ability to introduce specific sequences into the plant genome after cleavage by the CRISPR system and subsequent DNA repair through homology-directed repair (HDR), CRISPR ensures that genome editing can be successfully applied in plants, thus generating stronger and more improved traits. Also, the use of the CRISPR editing system can generate plants that are transgene-free and have mutations that are stably inherited, thus helping to circumvent current GMO regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antunes MS, Smith JJ, Jantz D, Medford J. Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease. BMC Biotechnol. 2012;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, Lyznik LA. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J. 2010;61(1):176–87.

    Article  CAS  PubMed  Google Scholar 

  3. Osakabe K, Osakabe Y, Yoki S. Site directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci U S A. 2010;107:12034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 2009;459(7245):442–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science. 2011;333:1843–6.

    Article  CAS  PubMed  Google Scholar 

  6. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–72.

    Article  PubMed  Google Scholar 

  7. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23(10):1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  Google Scholar 

  9. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:691–3.

    Article  CAS  PubMed  Google Scholar 

  11. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol. 2013;31(8):686–8.

    Article  CAS  PubMed  Google Scholar 

  12. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9:39.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol. 2015;32:76–84.

    Article  CAS  PubMed  Google Scholar 

  14. Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015;33:41–52.

    Article  CAS  PubMed  Google Scholar 

  15. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lozano-Juste J, Cutler SR. Plant genome engineering in full bloom. Trends Plant Sci. 2014;19:284–7.

    Article  CAS  PubMed  Google Scholar 

  17. Voytas DF, Gao C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 2014;12(6):e1001877. doi:10.1371/journal.pbio.1001877.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014;79(2):348–59.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41(20):e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 2015;33(11):1162–4.

    Article  CAS  PubMed  Google Scholar 

  21. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep. 2015;34:1473–6.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–51.

    Article  CAS  PubMed  Google Scholar 

  23. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.

    Article  CAS  PubMed  Google Scholar 

  24. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 2009;139(5):945–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mojica FJ, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.

    Article  CAS  PubMed  Google Scholar 

  27. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891):960–4.

    Article  CAS  PubMed  Google Scholar 

  28. Makarova KS, Aravind L, Grishin NV, Rogozin IB, Koonin EV. A DNA repair system specific for thermophilic archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002;30(2):482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of a novel family of sequence repeats among prokaryotes. OMICS. 2002;6(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  30. Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell. 2016;164(1-2):29–44.

    Article  CAS  PubMed  Google Scholar 

  31. Westra ER, Dowling AJ, Broniewski JM, van Houte S. Evolution and ecology of CRISPR. Annu Rev Ecol Evol Syst. 2016;47(1):307–31.

    Article  Google Scholar 

  32. Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat Struct Mol Biol. 2014;21(6):528–34.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155(3):733–40.

    Article  CAS  PubMed  Google Scholar 

  34. Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature. 2015;519(7542):199–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013;110:15644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: a review of the considerable within-species diversity. Nucleic Acids Res. 1988;16(17):8207–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shan Q, Wang Y, Li J, Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc. 2014;9(10):2395–410.

    Article  CAS  PubMed  Google Scholar 

  42. Endo M, Mikami M, Toki S. Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 2014;56(1):41–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 2013;23(10):1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu LJ. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res. 2007;17(5):471–82.

    Article  CAS  PubMed  Google Scholar 

  45. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK. Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant. 2013;6:2008–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 2015;15:16.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 2015;169(2):960–70.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N Y). 2014;7(1):5.

    Google Scholar 

  49. Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep. 2015;5:11491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Endo A, Masafumi M, Kaya H, Toki S. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep. 2016a;6:38169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J. 2016;15(6):713–7.

    Article  Google Scholar 

  52. Endo M, Mikami M, Toki S. Biallelic gene targeting in rice. Plant Physiol. 2016b;170(2):667–77.

    Article  CAS  PubMed  Google Scholar 

  53. Brooks C, Nekrasov V, Lippman ZB, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 2014;166:1292–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Upadhyay SK, Kumar J, Alok A, Tuli R. RNA guided genome editing for target gene mutations in wheat. G3 (Bethesda). 2013;3:2233–8.

    Article  CAS  Google Scholar 

  55. Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z. CRISPR/Cas9 mediated efficient targeted mutagenesis in chardonnay (Vitis vinifera L.). Sci Rep. 2016;6:32289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics. 2014;41(2):63–8.

    Article  CAS  PubMed  Google Scholar 

  57. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015;169(2):931–45.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J. 2017;15(2):207–16.

    Article  CAS  PubMed  Google Scholar 

  59. Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F. Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics. 2016;43:37–43.

    Article  PubMed  Google Scholar 

  60. Mikami M, Toki S, Endo M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep. 2015;34(10):1807–15.

    Article  CAS  PubMed  Google Scholar 

  61. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30(10):1473–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res. 2014;42(17):10903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nat Plants. 2016;2:16139.

    Article  CAS  PubMed  Google Scholar 

  64. Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL, Walker KA. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 2016;170(4):1917–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351:84–8.

    Article  CAS  PubMed  Google Scholar 

  67. Geisinger JM, Turan S, Hernandez S, Spector LP, Calos MP. In vivo blunt-end cloning through CRISPR/Cas9-facilitated nonhomologous end-joining. Nucleic Acids Res. 2016;44(8):e76. doi:10.1093/nar/gkv1542.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T, Gray JE, Quick WP, Bandyopadhyay A. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports 2017;36(5):745–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Bandyopadhyay Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhyay, A., Mazumdar, S., Yin, X., Quick, W.P. (2017). CRISPR: From Prokaryotic Immune Systems to Plant Genome Editing Tools. In: Tsang, S. (eds) Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, vol 1016. Springer, Cham. https://doi.org/10.1007/978-3-319-63904-8_6

Download citation

Publish with us

Policies and ethics