Skip to main content

From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1016))

Abstract

Paradigm shifts in science are often coupled to technological advances. New techniques offer new roads of discovery; but, more than this, they shape the way scientists approach questions. Developmental biology exemplifies this idea both in its past and present. The rise of molecular biology and genetics in the late twentieth century shifted the focus from the anatomical to the molecular, nudging the underlying philosophy from holism to reductionism. Developmental biology is currently experiencing yet another transformation triggered by ‘-omics’ technology and propelled forward by CRISPR genome engineering (GE). Together, these technologies are helping to reawaken a holistic approach to development. Herein, we focus on CRISPR GE and its potential to reveal principles of development at the level of the genome, the epigenome, and the cell. Within each stage we illustrate how GE can move past pure reductionism and embrace holism, ultimately delivering a more complete view of development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Horder T. History of developmental biology. Chichester, UK: Wiley; 2001.

    Book  Google Scholar 

  2. Waddington CH. The strategy of the genes: a discussion of some aspects of theoretical biology. London: Allen & Unwin; 1957.

    Google Scholar 

  3. Baedke J. The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Stud Hist Phil Biol Biomed Sci. 2013;44(4 Pt B):756–73.

    Article  Google Scholar 

  4. Astbury WT. Molecular biology or ultrastructural biology? Nature. 1961;190:1124.

    Article  CAS  PubMed  Google Scholar 

  5. Fang FC, Casadevall A. Reductionistic and holistic science. Infect Immun. 2011;79(4):1401–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perrimon N, Barkai N. The era of systems developmental biology. Curr Opin Genet Dev. 2011;21(6):681–3.

    Article  CAS  PubMed  Google Scholar 

  7. Johnston DS. PLOS biology: the renaissance of developmental biology. PLoS Biol. 2015;13(5):e1002149.

    Article  CAS  Google Scholar 

  8. Van Regenmortel MHV. Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep. 2004;5(11):1016–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mazzocchi F. Complexity in biology. Exceeding the limits of reductionism and determinism using complexity theory. EMBO Rep. 2008;9(1):10–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perrimon N, Pitsouli C, Shilo B-Z. Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol. 2012;4(8):a005975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Speybroeck L. From epigenesis to epigenetics: the case of C. H. Waddington. Ann N Y Acad Sci. 2002;981(1):61–81.

    Article  PubMed  Google Scholar 

  12. Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem. 2014;83:409–39.

    Article  CAS  PubMed  Google Scholar 

  13. Mojica FJM, Rodriguez-Valera F. The discovery of CRISPR in archaea and bacteria. FEBS J. 2016;283(17):3162–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lander ES. The heroes of CRISPR. Cell. 2016;164(1–2):18–28.

    Article  CAS  PubMed  Google Scholar 

  15. Harrison MM, Jenkins BV, O’Connor-Giles KM, Wildonger J. A CRISPR view of development. Genes Dev. 2014;28(17):1859–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doench JG. CRISPR/Cas9 gene editing special issue. FEBS J. 2016;283(17):3160–1.

    Article  CAS  PubMed  Google Scholar 

  19. Tsai SQ, Joung JK. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet. 2016;17(5):300–12.

    Article  CAS  PubMed  Google Scholar 

  20. Mohr SE, Hu Y, Ewen-Campen B, Housden BE, Viswanatha R, Perrimon N. CRISPR guide RNA design for research applications. FEBS J. 2016;283(17):3232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graham DB, Root DE. Resources for the design of CRISPR gene editing experiments. Genome Biol. 2015;16:260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. D’Agostino Y, D’Aniello S. Molecular basis, applications and challenges of CRISPR/Cas9: a continuously evolving tool for genome editing. Brief Funct Genomics. 2017.

    Google Scholar 

  23. Tycko J, Myer VE, Hsu PD. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell. 2016;63(3):355–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bolukbasi MF, Gupta A, Wolfe SA. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods. 2016;13(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  25. Bard J. A systems biology view of evolutionary genetics: network-driven processes incorporate much more variation than evolutionary genetics can handle. This variation is hard to formalise but allows fast change. BioEssays. 2010;32(7):559–63.

    Article  CAS  PubMed  Google Scholar 

  26. Bard JB. The next evolutionary synthesis: from Lamarck and Darwin to genomic variation and systems biology. Cell Commun Signal. 2011;9(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wagner A. Distributed robustness versus redundancy as causes of mutational robustness. BioEssays. 2005;27(2):176–88.

    Article  CAS  PubMed  Google Scholar 

  28. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–7.

    Article  CAS  PubMed  Google Scholar 

  29. Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  30. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343(6166):80–4.

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell. 2015;162(3):675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malina A, Mills JR, Cencic R, Yan Y, Fraser J, Schippers LM, et al. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev. 2013;27(23):2602–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014;509(7501):487–91.

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Port F, Chen HM, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci. 2014;111(29):E2967–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yin L, Maddison LA, Li M, Kara N, LaFave MC, Varshney GK, et al. Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics. 2015;200(2):431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ota S, Hisano Y, Ikawa Y, Kawahara A. Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells. 2014;19(7):555–64.

    Article  CAS  PubMed  Google Scholar 

  40. Niu Y, Bin S, Cui Y, Chen Y, Wang J, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156(4):836–43.

    Article  CAS  PubMed  Google Scholar 

  41. Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell. 2014;54(4):698–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wong ASL, Choi GCG, Cui CH, Pregernig G, Milani P, Adam M, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci. 2016;113(9):2544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159(3):647–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2014;517(7536):583–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015;160(1–2):339–50.

    Article  CAS  PubMed  Google Scholar 

  46. Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. 2015;33(11):1159–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peng J, Zhou Y, Zhu S, Wei W. High-throughput screens in mammalian cells using the CRISPR-Cas9 system. FEBS J. 2015;282(11):2089–96.

    Article  CAS  PubMed  Google Scholar 

  48. Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015;16(5):299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miles LA, Garippa RJ, Poirier JT. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens. FEBS J. 2016;283(17):3170–80.

    Article  CAS  PubMed  Google Scholar 

  50. Agrotis A, Ketteler R. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front Genet. 2015;6:300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sanjana NE. Genome-scale CRISPR pooled screens. Anal Biochem. 2017;532:95–9.

    Article  CAS  PubMed  Google Scholar 

  52. Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol. 2015;17(1):5–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Liu P, Long L, Xiong K, Yu B, Chang N, Xiong J-W, et al. Heritable/conditional genome editing in. Cell Res. 2014;24(7):886–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shah AN, Davey CF, Whitebirch AC, Miller AC, Moens CB. Rapid reverse genetic screening using CRISPR in zebrafish. Nat Methods. 2015;12(6):535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 2015;25(7):1030–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mashiko D, Young SAM, Muto M, Kato H, Nozawa K, Ogawa M, et al. Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes. Develop Growth Differ. 2013;56(1):122–9.

    Article  CAS  Google Scholar 

  57. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frankel N. Multiple layers of complexity in cis-regulatory regions of developmental genes. Dev Dyn. 2012;241(12):1857–66.

    Article  CAS  PubMed  Google Scholar 

  59. Soshnikova N. Hox genes regulation in vertebrates. Dev Dyn. 2014;243(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  60. Inoue F, Ahituv N. Decoding enhancers using massively parallel reporter assays. Genomics. 2015;106(3):159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dobzhansky T. Position effects on genes. Biol Rev. 1936;11(3):364–84.

    Article  Google Scholar 

  62. Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell. 2013;154(4):914–27.

    Article  CAS  PubMed  Google Scholar 

  63. Kwasnieski JC, Fiore C, Chaudhari HG, Cohen BA. High-throughput functional testing of ENCODE segmentation predictions. Genome Res. 2014;24(10):1595–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou HY, Katsman Y, Dhaliwal NK, Davidson S, Macpherson NN, Sakthidevi M, et al. A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev. 2014;28(24):2699–711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Li Y, Rivera CM, Ishii H, Jin F, Selvaraj S, Lee AY, et al. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS One. 2014;9(12):e114485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lopes R, Korkmaz G, Agami R. Applying CRISPR-Cas9 tools to identify and characterize transcriptional enhancers. Nat Rev Mol Cell Biol. 2016;17(9):597–604.

    Article  CAS  PubMed  Google Scholar 

  67. Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol Cell. 2015;58(2):362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gröschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1and GATA2 deregulation in leukemia. Cell. 2014;157(2):369–81.

    Article  PubMed  CAS  Google Scholar 

  69. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346(6215):1373–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature. 2014;513(7516):120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527(7577):192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, Myacheva K, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol. 2016;34(2):192–8.

    Article  CAS  PubMed  Google Scholar 

  73. Rajagopal N, Srinivasan S, Kooshesh K, Guo Y, Edwards MD, Banerjee B, et al. High-throughput mapping of regulatory DNA. Nat Biotechnol. 2016;34(2):167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Diao Y, Li B, Meng Z, Jung I, Lee AY, Dixon J, et al. A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Res. 2016;26(3):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science. 2016;354(6313):769–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P, Joung J, et al. High-resolution interrogation of functional elements in the noncoding genome. Science. 2016;353(6307):1545–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feuerborn A, Cook PR. Why the activity of a gene depends on its neighbors. Trends Genet. 2015;31(9):483–90.

    Article  CAS  PubMed  Google Scholar 

  78. Nguyen TA, Jones RD, Snavely AR, Pfenning AR, Kirchner R, Hemberg M, et al. High-throughput functional comparison of promoter and enhancer activities. Genome Res. 2016;26(8):1023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.

    Article  CAS  PubMed  Google Scholar 

  80. Waddington CH. The epigenotype. Int J Epidemiol. 2012;41(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  81. Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet. 2016;17(11):661–78.

    Article  CAS  PubMed  Google Scholar 

  82. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711.

    Article  CAS  PubMed  Google Scholar 

  83. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32.

    Article  CAS  PubMed  Google Scholar 

  84. Spivakov M, Fraser P. Defining cell type with chromatin profiling. Nat Biotechnol. 2016;34(11):1126–8.

    Article  CAS  PubMed  Google Scholar 

  85. Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 2016;48(10):1193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Groote ML, Verschure PJ, Rots MG. Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012;40(21):10596–613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Jurkowski TP, Ravichandran M, Stepper P. Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity. Clin Epigenetics. 2015;7:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. 2013;8(11):2180–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12(12):1143–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013;10(10):977–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10(10):973–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23(10):1163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31(9):833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. 2014;159(3):635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Farzadfard F, Perli SD, Lu TK. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol. 2013;2(10):604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, et al. Comparison of Cas9 activators in multiple species. Nat Methods. 2016;13(7):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Black JB, Adler AF, Wang H-G, D’Ippolito AM, Hutchinson HA, Reddy TE, et al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell. 2016;19(3):406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods. 2015;12(5):401–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44(12):5615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J, Ruiters MHJ, et al. Writing of H3K4Me3 overcomes epigeneticsilencing in a sustained but context-dependentmanner. Nat Commun. 2016;7:1–11.

    Article  CAS  Google Scholar 

  105. Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. 2016;7(29):46545–56.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2016;2:16009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167(1):233–235.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, et al. Inheritable silencing of endogenous genes by hit- and-run targeted epigenetic editing. Cell. 2016;167(1):219–224.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crocker J, Stern DL. TALE-mediated modulation of transcriptional enhancers in vivo. Nat Methods. 2013;10(8):762–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lin S, Ewen-Campen B, Ni X, Housden BE, Perrimon N. In vivo transcriptional activation using CRISPR-Cas9 in drosophila. Genetics. 2015;201(2):433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heller EA, Cates HM, Peña CJ, Sun H, Shao N, Feng J, et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 2014;17(12):1720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Stolzenburg S, Beltran AS, Swift-Scanlan T, Rivenbark AG, Rashwan R, Blancafort P. Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene. 2015;34(43):5427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Truong D-JJ, Kühner K, Kühn R, Werfel S, Engelhardt S, Wurst W, et al. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 2015;43(13):6450–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, et al. Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci. 2015;112(10):2984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zetsche B, Volz SE, Zhang F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. 2015;33(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  116. Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. CRISPR-Cas9-based photoactivatable transcription system. Chem Biol. 2015;22(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  117. Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol. 2015;33(7):755–60.

    Article  CAS  PubMed  Google Scholar 

  118. Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol. 2015;11(3):198–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ma D, Peng S, Xie Z. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells. Nat Commun. 2016;7:13056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Stem cell reports. Stem Cell Rep. 2015;5(3):448–59.

    Article  CAS  Google Scholar 

  121. Nguyen DP, Miyaoka Y, Gilbert LA, Mayerl SJ, Lee BH, Weissman JS, et al. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat Commun. 2016;7:12009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. 2015;11(5):316–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Agelopoulos M, McKay DJ, Mann RS. Developmental regulation of chromatin conformation by Hox proteins in Drosophila. Cell Rep. 2012;1(4):350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bonora G, Plath K, Denholtz M. A mechanistic link between gene regulation and genome architecture in mammalian development. Curr Opin Genet Dev. 2014;27:92–101.

    Article  CAS  PubMed  Google Scholar 

  126. Spurrell CH, Dickel DE, Visel A. The ties that bind: mapping the dynamic enhancer-promoter interactome. Cell. 2016;167(5):1163–6.

    Article  CAS  PubMed  Google Scholar 

  127. Denholtz M, Bonora G, Chronis C, Splinter E, de Laat W, Ernst J, et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell. 2013;13(5):602–16.

    Article  CAS  PubMed  Google Scholar 

  128. Wei Z, Gao F, Kim S, Yang H, Lyu J, An W, et al. Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. Cell Stem Cell. 2013;13(1):36–47.

    Article  CAS  PubMed  Google Scholar 

  129. Phillips-Cremins JE, Sauria MEG, Sanyal A, Gerasimova TI, Lajoie BR, Bell JSK, et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell. 2013;153(6):1281–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Apostolou E, Ferrari F, Walsh RM, Bar-Nur O, Stadtfeld M, Cheloufi S, et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell. 2013;12(6):699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang H, Jiao W, Sun L, Fan J, Chen M, Wang H, et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell. 2013;13(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  132. Andrey G, Montavon T, Mascrez B, Gonzalez F, Noordermeer D, Leleu M, et al. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science. 2013;340(6137):1234167.

    Article  PubMed  CAS  Google Scholar 

  133. Ghavi-Helm Y, Klein FA, Pakozdi T, Ciglar L, Noordermeer D, Huber W, et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature. 2014;512(7512):96–100.

    CAS  PubMed  Google Scholar 

  134. Straight AF, Belmont AS, Robinett CC, Murray AW. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol. 1996;6(12):1599–608.

    Article  CAS  PubMed  Google Scholar 

  135. Vazquez J, Belmont AS, Sedat JW. The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr Biol. 2002;12(17):1473–83.

    Article  CAS  PubMed  Google Scholar 

  136. Lucas JS, Zhang Y, Dudko OK, Murre C. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell. 2014;158(2):339–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ma H, Tu L-C, Naseri A, Huisman M, Zhang S, Grunwald D, et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol. 2016;34(5):528–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, et al. Expanding the CRISPR imaging toolset with Staphylococcus aureusCas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res. 2016;44(8):e75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Anton T, Bultmann S, Leonhardt H, Markaki Y. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus. 2014;5(2).

    Google Scholar 

  140. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci. 2015;112(10):3002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, et al. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. 2016;44(9):e86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lane AB, Strzelecka M, Ettinger A, Grenfell AW, Wittmann T, Heald R. Enzymatically generated CRISPR libraries for genome labeling and screening. Dev Cell. 2015;34(3):373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155(7):1479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert LA, et al. Versatile protein tagging in cells with split fluorescent protein. Nat Commun. 2016;7:11046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ochiai H, Sugawara T, Yamamoto T. Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res. 2015;43(19):e127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Liu Z, Legant WR, Chen B-C, Li L, Grimm JB, Lavis LD, et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. elife. 2014;3:e04236.

    PubMed  PubMed Central  Google Scholar 

  147. Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell. 2015;162(4):900–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell. 2012;149(6):1233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, et al. Reactivation of developmentally silenced globin genesby forced chromatin looping. Cell. 2014;158(4):849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Deng W, Blobel GA. Manipulating nuclear architecture. Curr Opin Genet Dev. 2014;25:1–7.

    Article  CAS  PubMed  Google Scholar 

  151. Sander K, Faessler PE. Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology. Int J Dev Biol. 2001;45(1):1–11.

    CAS  PubMed  Google Scholar 

  152. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis Elegans. Dev Biol. 1983;100(1):64–119.

    Article  CAS  PubMed  Google Scholar 

  153. Kretzschmar K, Watt FM. Lineage tracing. Cell. 2012;148(1–2):33–45.

    Article  CAS  PubMed  Google Scholar 

  154. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. Whole organism lineage tracing by combinatorial and cumulative genome editing. Science. 2016;353(6298):aaf7907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Kalhor R, Mali P, Church GM. Rapidly evolving homing crisPr barcodes. Nat Methods. 2017;14:195–200.

    Article  CAS  PubMed  Google Scholar 

  156. Perli SD, Cui CH, Lu TK. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science 2016;353(6304).

    Google Scholar 

  157. Junker JP, Spanjaard B, Peterson-Maduro J, Alemany A, Hu B, Florescu M, et al. Massively parallel whole-organism lineage tracing using CRISPR/Cas9 induced genetic scars. bioRxiv. Cold Spring Harbor Labs Journals; 2016. p. 056499.

    Google Scholar 

  158. Schmidt ST, Zimmerman SM, Wang J, Kim SK. Cell lineage tracing using nuclease barcoding. 2016. arXiv.org.

  159. Frieda KL, Linton JM, Hormoz S, Choi J, Chow K-HK, Singer ZS, et al. Synthetic recording and in situ readout of lineage information in single cells. Nature. 2017;541(7635):107–11.

    Article  CAS  PubMed  Google Scholar 

  160. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  161. Orqueda AJ, Giménez CA, Pereyra-Bonnet F. iPSCs: a minireview from bench to bed, including organoids and the CRISPR system. Stem Cells Int. 2016;2016:5934782.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Huch M, Koo B-K. Modeling mouse and human development using organoid cultures. Development. 2015;142(18):3113–25.

    Article  CAS  PubMed  Google Scholar 

  163. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014;345(6194):1247125.

    Article  PubMed  CAS  Google Scholar 

  164. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54.

    Article  PubMed  CAS  Google Scholar 

  165. Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 2016;38(6):590–600.

    Article  CAS  PubMed  Google Scholar 

  166. Jackson EL, Lu H. Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol (Camb). 2016;8(6):672–83.

    Article  CAS  Google Scholar 

  167. Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Humanit Med. 2009;4(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Liu Z, Lavis LD, Betzig E. Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell. 2015;58(4):644–59.

    Article  CAS  PubMed  Google Scholar 

  169. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62.

    CAS  PubMed  Google Scholar 

  170. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43–7.

    Article  CAS  PubMed  Google Scholar 

  171. Schwank G, Koo B-K, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653–8.

    Article  CAS  PubMed  Google Scholar 

  172. Zhu Z, Verma N, Gonzalez F, Shi Z-D, Huangfu D. A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Reports. 2015;4(6):1103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhu Z, Li QV, Lee K, Rosen BP, Gonzalez F, Soh C-L, et al. Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell. 2016;18(6):755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen Y, Cao J, Xiong M, Petersen AJ, Dong Y, Tao Y, et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell. 2015;17(2):233–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Gonzalez F, Zhu Z, Shi Z-D, Lelli K, Verma N, Li QV, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editingin human pluripotent stem cells. Cell Stem Cell. 2014;15(2):215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gonzalez F. CRISPR/Cas9 genome editing in human pluripotent stem cells: harnessing human genetics in a dish. Dev Dyn. 2016;245(7):788–806.

    Article  PubMed  Google Scholar 

  177. Merkle FT, Neuhausser WM, Santos D, Valen E, Gagnon JA, Maas K, et al. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep. 2015;11(6):875–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Flynn R, Grundmann A, Renz P, Hänseler W, James WS, Cowley SA, et al. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. 2015;43(10):838–848.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Niu X, He W, Song B, Ou Z, Fan D, Chen Y, et al. Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells. J Biol Chem. 2016;291(32):16576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kearns NA, Genga RMJ, Enuameh MS, Garber M, Wolfe SA, Maehr R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development. 2013;141(1):219–23.

    Article  CAS  Google Scholar 

  181. Woodford C, Zandstra PW. Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation. Curr Opin Biotechnol. 2012;23(5):810–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Springmann M, Godfray HCJ, Rayner M, Scarborough P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc Natl Acad Sci. 2016;113(15):4146–51. doi:10.1073/pnas.1523119113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sprenger M. United Nations meeting on antimicrobial resistance. Bull World Health Organ. 2016;94:638–9.

    Article  Google Scholar 

  184. Crimmins A, Balbus J, Gamble JL, Beard CB, Bell JE, Dodgen D, Eisen RJ, Fann N, Hawkins MD, Herring SC, Jantarasami L, Mills DM, Saha S, Sarofim MC, Trtanj J, Ziska L. The impacts of climate change on human health in the United States: a scientific assessment. Washington, DC: U.S. Global Change Research Program; 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca K. Delker Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delker, R.K., Mann, R.S. (2017). From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering. In: Tsang, S. (eds) Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, vol 1016. Springer, Cham. https://doi.org/10.1007/978-3-319-63904-8_3

Download citation

Publish with us

Policies and ethics