Skip to main content

Viral Vectors, Engineered Cells and the CRISPR Revolution

  • Chapter
  • First Online:
Precision Medicine, CRISPR, and Genome Engineering

Abstract

Over the past few decades the ability to edit human cells has revolutionized modern biology and medicine. With advances in genome editing methodologies, gene delivery and cell-based therapeutics targeted at treatment of genetic disease have become a reality that will become more and more essential in clinical practice. Modifying specific mutations in eukaryotic cells using CRISPR-Cas systems derived from prokaryotic immune systems has allowed for precision in correcting various disease mutations. Furthermore, delivery of genetic payloads by employing viral tropism has become a crucial and effective mechanism for delivering genes and gene editing systems into cells. Lastly, cells modified ex vivo have tremendous potential and have shown effective in studying and treating a myriad of diseases. This chapter seeks to highlight and review important progress in the realm of the editing of human cells using CRISPR-Cas systems, the use of viruses as vectors for gene therapy, and the application of engineered cells to study and treat disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffith F. The significance of pneumococcal types. J Hyg (Lond). 1928;27:113–59.

    Article  CAS  Google Scholar 

  2. Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med. 1944;79:137–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szybalska EH, Szybalski W. Genetics of human cell lines, IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci U S A. 1962;48:2026–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933–41. doi:10.1038/nbt.3659.

    Article  CAS  PubMed  Google Scholar 

  5. Temin HM. Malignant transformation in cell cultures. Health Lab Sci. 1964;1:79–83.

    CAS  PubMed  Google Scholar 

  6. Temin HM. Malignant transformation of cells by viruses. Perspect Biol Med. 1970;14:11–26.

    Article  CAS  PubMed  Google Scholar 

  7. Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet. 2011;45:247–71.

    Article  CAS  PubMed  Google Scholar 

  8. Govindan G, Ramalingam S. Programmable site-specific nucleases for targeted genome engineering in higher eukaryotes. J Cell Physiol. 2016;231:2380–92.

    Article  CAS  PubMed  Google Scholar 

  9. Storici F, Resnick MA. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol. 2006;409:329–45.

    Article  CAS  PubMed  Google Scholar 

  10. Puchta H, Dujon B, Hohn B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 1993;21:5034–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14:8096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yanik M, et al. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Prog Retin Eye Res. doi:10.1016/j.preteyeres.2016.09.001.

  13. Chandrasegaran S, Smith J. Chimeric restriction enzymes: what is next? Biol Chem. 1999;380:841–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim YG, Shi Y, Berg JM, Chandrasegaran S. Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene. 1997;203:43–9.

    Article  CAS  PubMed  Google Scholar 

  15. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93:1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Urnov FD, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435:646–51.

    Article  CAS  PubMed  Google Scholar 

  18. Schierling B, et al. A novel zinc-finger nuclease platform with a sequence-specific cleavage module. Nucleic Acids Res. 2012;40:2623–38.

    Article  CAS  PubMed  Google Scholar 

  19. Boch J, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12.

    Article  CAS  PubMed  Google Scholar 

  20. Scholze H, Boch J. TAL effectors are remote controls for gene activation. Curr Opin Microbiol. 2011;14:47–53.

    Article  CAS  PubMed  Google Scholar 

  21. Christian M, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller JC, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29:143–8.

    Article  CAS  PubMed  Google Scholar 

  23. Holkers M, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41:e63.

    Article  CAS  PubMed  Google Scholar 

  24. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakata A, Amemura M, Makino K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J Bacteriol. 1989;171:3553–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol. 2000;36:244–6.

    Article  CAS  PubMed  Google Scholar 

  27. Makarova KS, et al. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol. 2011;9:467–77.

    Article  CAS  PubMed  Google Scholar 

  28. Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of a novel family of sequence repeats among prokaryotes. OMIC. 2002;6:23–33.

    Article  CAS  Google Scholar 

  29. Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell. 2010;37:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jinek M, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y. et al. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. 2014; 4.

    Google Scholar 

  32. Jinek M, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343:1247997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Makarova KS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13:722–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mali P, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Osborn MJ, et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther. 2015;26:114–26.

    Article  CAS  PubMed  Google Scholar 

  37. Li Y, et al. Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther. 2014;22:1688–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB. Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep. 2016;6:19969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang G, Zhao N, Berkhout B, Das AT. A combinatorial CRISPR-Cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected T cell cultures. Cell Rep. 2016;17:2819–26.

    Article  CAS  PubMed  Google Scholar 

  40. van Diemen FR, et al. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog. 2016;12:e1005701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Salomon DR. A CRISPR way to block PERVs—engineering organs for transplantation. N Engl J Med. 2016;374:1089–91.

    Article  CAS  PubMed  Google Scholar 

  42. Yang L, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 2015;350:1101–4.

    Article  CAS  PubMed  Google Scholar 

  43. Burstein D, et al. New CRISPR-Cas systems from uncultivated microbes. Nature. 2016. doi:10.1038/nature21059.

  44. Zetsche B, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol. 2017;35:31–4.

    Article  CAS  PubMed  Google Scholar 

  45. Kleinstiver BP, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kleinstiver BP, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523:481–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Evers B, et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. 2016;34:631–3.

    Article  CAS  PubMed  Google Scholar 

  48. Slaymaker IM, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351:84–8.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang F, et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. 2016;351:867–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsai SQ, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187–97.

    Article  CAS  PubMed  Google Scholar 

  51. Mali P, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31:833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kiani S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods. 2015;12:1051–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chavez A, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12:326–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vojta A, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44(12):5615–28. doi:10.1093/nar/gkw159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hilton IB, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33:510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joglekar AV, et al. Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus. Mol Ther. 2013;21:1705–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller AD, Chen F. Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry. J Virol. 1996;70:5564–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. McMichael AJ, Rowland-Jones SL. Cellular immune responses to HIV. Nature. 2001;410:980–7.

    Article  CAS  PubMed  Google Scholar 

  59. Retroviruses. Cold Spring Harbor Laboratory Press; 1997.

    Google Scholar 

  60. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990;10:4239–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Naldini L, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272:263–7.

    Article  CAS  PubMed  Google Scholar 

  62. Hacein-Bey-Abina S, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118:3132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cavazzana M, Six E, Lagresle-Peyrou C, André-Schmutz I, Hacein-Bey-Abina S. Gene therapy for X-linked severe combined immunodeficiency: where do we stand? Hum Gene Ther. 2016;27:108–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cronin J, Zhang X-Y, Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther. 2005;5:387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gollan TJ, Green MR. Redirecting retroviral tropism by insertion of short, nondisruptive peptide ligands into envelope. J Virol. 2002;76:3558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morizono K, et al. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat Med. 2005;11:346–52.

    Article  CAS  PubMed  Google Scholar 

  67. Tai C-K, et al. Antibody-mediated targeting of replication-competent retroviral vectors. Hum Gene Ther. 2003;14:789–802.

    Article  CAS  PubMed  Google Scholar 

  68. Choi JG, et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. 2016;23:627–33.

    Article  CAS  PubMed  Google Scholar 

  69. Cai Y, Bak RO, Mikkelsen JG. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. elife. 2014;3:e01911.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lombardo A, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25:1298–306.

    Article  CAS  PubMed  Google Scholar 

  71. Cai Y, et al. Targeted, homology-driven gene insertion in stem cells by ZFN-loaded ‘all-in-one’ lentiviral vectors. elife. 2016;5:e12213.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mikkelsen JG, Pedersen FS. Genetic reassortment and patch repair by recombination in retroviruses. J Biomed Sci. 2000;7:77–99.

    Article  CAS  PubMed  Google Scholar 

  73. Mock U, et al. Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Sci Rep. 2014;4:6409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chari R, Mali P, Moosburner M, Church GM. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. 2015;12:823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Saayman S, Ali SA, Morris KV, Weinberg MS. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. 2015;15:819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramanan V, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep. 2015;5:10833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pelascini LPL, Janssen JM, Gonçalves MAFV. Histone deacetylase inhibition activates transgene expression from integration-defective lentiviral vectors in dividing and non-dividing cells. Hum Gene Ther. 2013;24:78–96.

    Article  CAS  PubMed  Google Scholar 

  79. Hacein-Bey-Abina S, et al. A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med. 2014;371:1407–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Thornhill SI, et al. Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther. 2008;16:590–8.

    Article  CAS  PubMed  Google Scholar 

  81. van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet. 2016;25:R42–52.

    Article  PubMed  CAS  Google Scholar 

  82. Castiello MC, et al. B-cell reconstitution after lentiviral vector-mediated gene therapy in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2015;136:692–702.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Abina SH-B, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA. 2015;313:1550–63.

    Article  CAS  PubMed Central  Google Scholar 

  84. Maude SL, et al. Chimeric antigen receptor T cells for sustained remissions in Leukemia. N Engl J Med. 2014;371:1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Russell WC. Adenoviruses: update on structure and function. J Gen Virol. 2009;90:1–20.

    Article  CAS  PubMed  Google Scholar 

  86. Crystal R, Adenovirus G. The first effective in vivo gene delivery vector. Hum Gene Ther. 2014;25:3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Appaiahgari MB, Vrati S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin Biol Ther. 2015;15:337–51.

    Article  CAS  PubMed  Google Scholar 

  88. Chen X, Gonçalves MAFV. Engineered viruses as genome editing devices. Mol Ther. 2016;24:447–57.

    Article  CAS  PubMed  Google Scholar 

  89. Alonso-Padilla J, et al. Development of novel adenoviral vectors to overcome challenges observed with HAdV-5-based constructs. Mol Ther. 2016;24:6–16.

    Article  CAS  PubMed  Google Scholar 

  90. Wold WSM, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther. 2013;13:421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jaffe HA, et al. Adenovirus–mediated in vivo gene transfer and expression in normal rat liver. Nat Genet. 1992;1:372–8.

    Article  CAS  PubMed  Google Scholar 

  92. Rosenfeld MA, et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell. 1992;68:143–55.

    Article  CAS  PubMed  Google Scholar 

  93. Kochanek S, et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A. 1996;93:5731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Józkowicz A, Dulak J. Helper-dependent adenoviral vectors in experimental gene therapy. Acta Biochim Pol. 2005;52:589–99.

    PubMed  PubMed Central  Google Scholar 

  95. Aizawa E, et al. Efficient and accurate homologous recombination in hESCs and hiPSCs using helper-dependent adenoviral vectors. Mol Ther. 2012;20:424–31.

    Article  CAS  PubMed  Google Scholar 

  96. Liu G-H, et al. Targeted gene correction of Laminopathy-Associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell. 2011;8:688–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brunetti-Pierri N, et al. Sustained phenotypic correction of canine hemophilia B after systemic administration of helper-dependent adenoviral vector. Hum Gene Ther. 2005;16:811–20.

    Article  CAS  PubMed  Google Scholar 

  98. Dudley RWR, et al. Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum Gene Ther. 2004;15:145–56.

    Article  CAS  PubMed  Google Scholar 

  99. Carroll D. Zinc-finger nucleases as gene therapy agents. Gene Ther. 2008;15:1463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maggio I, et al. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep. 2014;4:5105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Holkers M, et al. Adenoviral vector DNA for accurate genome editing with engineered nucleases. Nat Methods. 2014;11:1051–7.

    Article  CAS  PubMed  Google Scholar 

  102. Perez EE, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26:808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang W, et al. Targeted genome correction by a single adenoviral vector simultaneously carrying an inducible zinc finger nuclease and a donor template. J Biotechnol. 2014;188:1–6.

    Article  CAS  PubMed  Google Scholar 

  104. Guse K, et al. Capsid-modified adenoviral vectors for improved muscle-directed gene therapy. Hum Gene Ther. 2012;23:1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nicol CG, et al. Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol Ther. 2004;10:344–54.

    Article  CAS  PubMed  Google Scholar 

  106. Knowles MR, et al. A controlled study of adenoviral-vector–mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med. 1995;333:823–31.

    Article  CAS  PubMed  Google Scholar 

  107. Zabner J, et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993;75:207–16.

    Article  CAS  PubMed  Google Scholar 

  108. Yang Y, et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A. 1994;91:4407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jooss K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implications for gene therapy. Gene Ther. 2003;10:955–63.

    Article  CAS  PubMed  Google Scholar 

  110. Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet. 2000;1:91–9.

    Article  CAS  PubMed  Google Scholar 

  111. Wilson JM. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab. 2009;96:151–7.

    Article  CAS  PubMed  Google Scholar 

  112. Wilson JM. A history lesson for stem cells. Science. 2009;324:727–8.

    Article  CAS  PubMed  Google Scholar 

  113. Smaill F, et al. A human type 5 adenovirus–based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med. 2013;5:205ra134.

    Article  PubMed  CAS  Google Scholar 

  114. Crank MC, et al. Safety and immunogenicity of a rAd35-EnvA prototype HIV-1 vaccine in combination with rAd5-EnvA in healthy adults (VRC 012). PLoS One. 2016;11:e0166393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Liu S, Jackson A, Beloor J, Kumar P, Sutton RE. Adenovirus-vectored broadly neutralizing antibodies directed against gp120 prevent human immunodeficiency virus type 1 acquisition in humanized mice. Hum Gene Ther. 2015;26:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. De BP, et al. Disrupted adenovirus-based vaccines against small addictive molecules circumvent anti-adenovirus immunity. Hum Gene Ther. 2013;24:58–66.

    Article  CAS  PubMed  Google Scholar 

  117. Bauerschmitz GJ, et al. Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res. 2002;62:1266–70.

    CAS  PubMed  Google Scholar 

  118. Shen Y-H, et al. Arg-Gly-Asp (RGD)-modified E1A/E1B double mutant adenovirus enhances antitumor activity in prostate cancer cells in vitro and in mice. PLoS One. 2016;11:e0147173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Rodriguez R, et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 1997;57:2559–63.

    CAS  PubMed  Google Scholar 

  120. Small EJ, et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen–targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther. 2006;14:107–17.

    Article  CAS  PubMed  Google Scholar 

  121. Sweeney K, Halldén G. Oncolytic adenovirus-mediated therapy for prostate cancer. Oncolytic Virother. 2016;5:45–57.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sarkar S, et al. Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget. 2015;6:10712–27.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149:754–5.

    Article  CAS  PubMed  Google Scholar 

  124. Duan D. Systemic delivery of adeno-associated viral vectors. Curr Opin Virol. 2016;21:16–25.

    Article  CAS  PubMed  Google Scholar 

  125. McCarty DM, Young SM Jr, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet. 2004;38:819–45.

    Article  CAS  PubMed  Google Scholar 

  126. Penaud-Budloo M, et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol. 2008;82:7875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 2016;21:75–80.

    Article  CAS  PubMed  Google Scholar 

  128. Cassinotti P, Weitz M, Tratschin JD. Organization of the adeno-associated virus (AAV) capsid gene: mapping of a minor spliced mRNA coding for virus capsid protein 1. Virology. 1988;167:176–84.

    Article  CAS  Google Scholar 

  129. Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci U S A. 2010;107:10220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J Control Release. 2016;241:94–109.

    Article  CAS  PubMed  Google Scholar 

  131. Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther. 2009;11:442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Vandenberghe LH, et al. Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat Med. 2006;12:967–71.

    Article  CAS  PubMed  Google Scholar 

  133. Kashiwakura Y, et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol. 2005;79:609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ. Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol. 2006;80:8961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Akache B, et al. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol. 2006;80:9831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kurzeder C, et al. CD9 promotes adeno-associated virus type 2 infection of mammary carcinoma cells with low cell surface expression of heparan sulphate proteoglycans. Int J Mol Med. 2007;19:325–33.

    CAS  PubMed  Google Scholar 

  137. Pillay S, et al. An essential receptor for adeno-associated virus infection. Nature. 2016;530:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nakai H, et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol. 2001;75:6969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8:1248–54.

    Article  CAS  PubMed  Google Scholar 

  140. Chamberlain K, Riyad JM, Weber T. Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Ther Methods. 2016;27:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chew WL, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016;13:868–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tabebordbar M, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351:407–11.

    Article  CAS  PubMed  Google Scholar 

  143. Hung SSC, et al. AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Invest Opthalmol Vis Sci. 2016;57:3470.

    Article  CAS  Google Scholar 

  144. Yang Y, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34:334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Brockstedt DG, et al. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin Immunol. 1999;92:67–75.

    Article  CAS  PubMed  Google Scholar 

  146. Mingozzi F, High KA. Immune responses to AAV in clinical trials. Curr Gene Ther. 2011;11:321–30.

    Article  CAS  PubMed  Google Scholar 

  147. Rogers GL, et al. Innate immune responses to AAV vectors. Front Microbiol. 2011; 2.

    Google Scholar 

  148. Denard J, et al. Human galectin 3 binding protein interacts with recombinant adeno-associated virus type 6. J Virol. 2012;86:6620–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li C, et al. Development of patient-specific AAV vectors after neutralizing antibody selection for enhanced muscle gene transfer. Mol Ther. 2016;24:53–65.

    Article  CAS  PubMed  Google Scholar 

  150. Tseng Y-S, Agbandje-McKenna M. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Front Immunol. 2014;5:9.

    PubMed  PubMed Central  Google Scholar 

  151. Li S, et al. Efficient and targeted transduction of nonhuman primate liver with systemically delivered optimized AAV3B vectors. Mol Ther. 2015;23:1867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Murlidharan G, Corriher T, Ghashghaei HT, Asokan A. Unique glycan signatures regulate adeno-associated virus tropism in the developing brain. J Virol. 2015;89:3976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Castle M, Turunen H, Vandenberghe L, Wolfe J. Controlling AAV tropism in the nervous system with natural and engineered capsids. In: Manfredsson FP, editor. Gene therapy for neurological disorders. New York: Springer; 2016. p. 133–49.

    Chapter  Google Scholar 

  154. Muzyczka N, Berns KI. AAV’s golden jubilee. Mol Ther. 2015;23:807–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Flotte T, et al. A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther. 1996;7:1145–59.

    Article  CAS  PubMed  Google Scholar 

  156. Gene Therapy Clinical Trials Worldwide. http://www.wiley.com/legacy/wileychi/genmed/clinical/. Accessed 28 Jan 2017.

  157. Nathwani AC, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371:1994–2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Bainbridge JWB, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372:1887–97.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Gaudet D, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 2013;20:361–9.

    Article  CAS  PubMed  Google Scholar 

  160. Morrison C. $1-million price tag set for Glybera gene therapy. Nat Biotechnol. 2015;33:217–8.

    Article  CAS  PubMed  Google Scholar 

  161. Moran N. First gene therapy approved. Nat Biotechnol. 2012;30:1153.

    Article  CAS  Google Scholar 

  162. Vercauteren K, et al. Superior in vivo transduction of human hepatocytes using engineered AAV3 capsid. Mol Ther. 2016;24:1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Riddell SR, et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257:238–41.

    Article  CAS  PubMed  Google Scholar 

  164. Levine BL, et al. Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med. 2002;8:47–53.

    Article  CAS  PubMed  Google Scholar 

  165. Rapoport AP, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med. 2005;11:1230–7.

    Article  CAS  PubMed  Google Scholar 

  166. Hoos A. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235–47.

    Article  CAS  PubMed  Google Scholar 

  167. June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015;7:280ps7.

    Article  PubMed  CAS  Google Scholar 

  168. Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64:891–901.

    Article  CAS  PubMed  Google Scholar 

  169. Imai C, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18:676–84.

    Article  CAS  PubMed  Google Scholar 

  170. Milone MC, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17:1453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Song D-G, et al. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 2011;71:4617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Brentjens RJ, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007;13:5426–35.

    Article  CAS  PubMed  Google Scholar 

  173. Kowolik CM, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 2006;66:10995–1004.

    Article  CAS  PubMed  Google Scholar 

  174. Brentjens RJ, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003;9:279–86.

    Article  CAS  PubMed  Google Scholar 

  175. Cooper LJN, et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood. 2003;101:1637–44.

    Article  CAS  PubMed  Google Scholar 

  176. Ye L, et al. Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Stem Cells Transl Med. 2013;2:558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Loh Y-H, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.

    Article  CAS  PubMed  Google Scholar 

  178. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  179. Ou Z, et al. The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice. Sci Rep. 2016;6:32463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Young CS, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 2016;18:533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Park C-Y, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17:213–20.

    Article  CAS  PubMed  Google Scholar 

  182. Chapman JR, Taylor MRG, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47:497–510.

    Article  CAS  PubMed  Google Scholar 

  183. Chu VT, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33:543–8.

    Article  CAS  PubMed  Google Scholar 

  184. Maruyama T, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33:538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Robert F, Barbeau M, Éthier S, Dostie J, Pelletier J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 2015;7:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Yu C, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 2015;16:142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M. Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol. 1998;18:93–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. DiCarlo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DiCarlo, J.E., Deeconda, A., Tsang, S.H. (2017). Viral Vectors, Engineered Cells and the CRISPR Revolution. In: Tsang, S. (eds) Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, vol 1016. Springer, Cham. https://doi.org/10.1007/978-3-319-63904-8_1

Download citation

Publish with us

Policies and ethics