Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 291 Accesses

Abstract

The Standard Model (SM) of particle physics represents today our deepest comprehension of Nature in terms of fundamental constituents and interactions among them. However there are a few striking observations that are not explained by the SM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Drewes, The phenomenology of right handed neutrinos. Int. J. Mod. Phys. E 22, 1330019 (2013)

    Article  ADS  Google Scholar 

  2. R. Adhikari et al., A white paper on keV sterile neutrino dark matter (2016)

    Google Scholar 

  3. Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998)

    Article  ADS  Google Scholar 

  4. S.N. Ahmed et al., Measurement of the total active B-8 solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. Phys. Rev. Lett. 92, 181301 (2004)

    Article  ADS  Google Scholar 

  5. C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford)

    Google Scholar 

  6. P. Minkowski, \(\mu \rightarrow e\gamma \) at a rate of one out of \(10^{9}\) muon decays? Phys. Lett. B 67, 421–428 (1977)

    Article  ADS  Google Scholar 

  7. M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories. Conf. Proc. C 790927, 315–321 (1979)

    Google Scholar 

  8. R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  9. E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009)

    Article  ADS  Google Scholar 

  10. D. Larson et al., Seven-year wilkinson microwave anisotropy probe (WMAP) observations: power spectra and WMAP-derived parameters. Astrophys. J. Suppl. 192, 16 (2011)

    Google Scholar 

  11. A.D. Dolgov, NonGUT baryogenesis. Phys. Rept. 222, 309–386 (1992)

    Article  ADS  Google Scholar 

  12. A.D. Sakharov, Violation of CP invariance, c asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967); Usp. Fiz. Nauk. 161, 61 (1991)

    Google Scholar 

  13. M. Fukugita, T. Yanagida, Baryogenesis without grand unification. Phys. Lett. B 174, 45 (1986)

    Article  ADS  Google Scholar 

  14. A. Boyarsky, O. Ruchayskiy, M. Shaposhnikov, The Role of sterile neutrinos in cosmology and astrophysics. Ann. Rev. Nucl. Part. Sci. 59, 191–214 (2009)

    Article  ADS  Google Scholar 

  15. N. Isgur, M.B. Wise, Weak decays of heavy mesons in the static quark approximation. Phys. Lett. B 232, 113–117 (1989)

    Article  ADS  Google Scholar 

  16. E. Eichten, B.R. Hill, An effective field theory for the calculation of matrix elements involving heavy quarks. Phys. Lett. B 234, 511 (1990)

    Article  ADS  Google Scholar 

  17. M.L. Bellac, Thermal Field Theory (Cambridge University Press, 1996)

    Google Scholar 

  18. M. Laine, A. Vuorinen, Basics of thermal field theory. Lect. Notes Phys. 925, 1–281 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Laine, Thermal right-handed neutrino production rate in the relativistic regime. JHEP 08, 138 (2013)

    Article  ADS  Google Scholar 

  20. A. Salvio, P. Lodone, A. Strumia, Towards leptogenesis at NLO: the right-handed neutrino interaction rate. JHEP 08, 116 (2011)

    Article  ADS  MATH  Google Scholar 

  21. M. Laine, Y. Schroder, Thermal right-handed neutrino production rate in the non-relativistic regime. JHEP 02, 068 (2012)

    Article  ADS  MATH  Google Scholar 

  22. S. Biondini, N. Brambilla, M.A. Escobedo, A. Vairo, An effective field theory for non-relativistic Majorana neutrinos. JHEP 12, 028 (2013)

    Article  ADS  Google Scholar 

  23. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985)

    Article  ADS  Google Scholar 

  24. J. Liu, G. Segre, Reexamination of generation of baryon and lepton number asymmetries by heavy particle decay. Phys. Rev. D 48, 4609–4612 (1993)

    Article  ADS  Google Scholar 

  25. L. Covi, E. Roulet, F. Vissani, CP violating decays in leptogenesis scenarios. Phys. Lett. B 384, 169–174 (1996)

    Article  ADS  Google Scholar 

  26. M. Flanz, E.A. Paschos, U. Sarkar, J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos. Phys. Lett. B 389, 693–699 (1996)

    Article  ADS  Google Scholar 

  27. W. Buchmuller, M. Plumacher, CP asymmetry in majorana neutrino decays. Phys. Lett. B 431, 354–362 (1998)

    Article  ADS  Google Scholar 

  28. M. Garny, A. Kartavtsev, A. Hohenegger, Leptogenesis from first principles in the resonant regime. Annals Phys. 328, 26–63 (2013)

    Article  ADS  MATH  Google Scholar 

  29. B. Garbrecht, M. Herranen, Effective theory of resonant leptogenesis in the closed-time-path approach. Nucl. Phys. B 861, 17–52 (2012)

    Article  ADS  MATH  Google Scholar 

  30. A. Pilaftsis, T.E.J. Underwood, Resonant leptogenesis. Nucl. Phys. B 692, 303–345 (2004)

    Article  ADS  Google Scholar 

  31. L. Covi, N. Rius, E. Roulet, F. Vissani, Finite temperature effects on CP violating asymmetries. Phys. Rev. D 57, 93–99 (1998)

    Article  ADS  Google Scholar 

  32. G.F. Giudice, A. Notari, M. Raidal, A. Riotto, A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM. Nucl. Phys. B 685, 89–149 (2004)

    Article  ADS  Google Scholar 

  33. M. Garny, A. Hohenegger, A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis. Phys. Rev. D 81, 085028 (2010)

    Article  ADS  Google Scholar 

  34. A. Anisimov, W. Buchmller, M. Drewes, S. Mendizabal, Quantum leptogenesis I. Ann. Phys. 326, 1998–2038 (2011). (Erratum: Ann. Phys. 338, 376 (2011))

    Google Scholar 

  35. C. Kiessig, M. Plumacher, Hard-thermal-loop corrections in leptogenesis I: CP-asymmetries. JCAP 1207, 014 (2012)

    Article  ADS  Google Scholar 

  36. S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rept. 466, 105–177 (2008)

    Article  ADS  Google Scholar 

  37. C.S. Fong, E. Nardi, A. Riotto, Leptogenesis in the universe. Adv. High Energ. Phys. 2012, 158303 (2012)

    Google Scholar 

  38. M. Laine, Thermal 2-loop master spectral function at finite momentum. JHEP 05, 083 (2013)

    Article  ADS  Google Scholar 

  39. S. Biondini, N. Brambilla, M.A. Escobedo, A. Vairo, CP asymmetry in heavy Majorana neutrino decays at finite temperature: the nearly degenerate case. JHEP 03, 191 (2016)

    Article  ADS  Google Scholar 

  40. S. Biondini, N. Brambilla, A. Vairo, CP asymmetry in heavy Majorana neutrino decays at finite temperature: the hierarchical case. JHEP 09, 126 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Biondini .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Biondini, S. (2017). Introduction. In: Effective Field Theories for Heavy Majorana Neutrinos in a Thermal Bath. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63901-7_1

Download citation

Publish with us

Policies and ethics