Development of Optical Fiber Stress Sensor Based on OTDR

  • Hsi-Shan HuangEmail author
  • Jeng-Shyang Pan
  • Yen-Ming Tseng
  • Weidong Fang
  • Ruey-Ming Shih
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 82)


In this paper, an OTDR-wide full dispersion fiber stress sensor is used to sensing the signal of strain, and the geometrical bending of the optical fiber can be generated by the strain of stress, and the variation characteristic of the optical conduction modal. When stress is produced in single-mode fibers, the optical energy of a part of the optical fiber is transformed into a radiant mode, so that an OTDR can accurately identify the location of the signal source, and the OTDR uses the time-domain analysis of the optical pulse wave technique, which can simultaneously sensing the accurate energy loss and position of the source of stress signals [1].

The single-mode optical fiber is used to simulate two different practical environments. One is the soil, the other is the sand, and uses two different material protection casing, one is the plastic casing, the other is the silicone casing, carries on the real measure, and compares the different light wave pulse width, the measured result to the different average time to the stress influence. Finally, the material elasticity and deformation characteristics of two kinds of protective casing are tested. The experimental results are that the selection of silicone protective casing is ideal, while the length of 150 m multi-point monitoring, the light pulse width of the choice of 100 ns, so the results obtained in the experiment can prove the ratio of stress to elastic modulus of relationship. On the other hand, because the quality of sand and soil of different problems, so the hardness of different, the same weight trample on the specific stresses of the rendering, in different substrate materials reflect different stress changes, because the sand soft and then greatly enhance the sensitivity of stress [2].


Full dispersion Stress Strain 


  1. 1.
    Guo, Z.S., Feng, J., Wang, H.: Cryogenic temperature characteristics of the fiber Bragg grating sensors. Cryogenics 52(10), 457–460 (2012)CrossRefGoogle Scholar
  2. 2.
    Guo, L.Y., Ho, I.J., Hou, Y.Y., Yang, C.H., Wu, W.L., Chen, S.K.: Comparison of plantar pressure distribution between different speed and incline during treadmill jogging. J. Sports Sci. Med. 9(1), 154–160 (2010)Google Scholar
  3. 3.
    Mita, A., Yokoi, I.: Fiber Bragg grating accelerometer for structural health monitoring. In: Fifth International Conference on Motion and Vibration Control (2000)Google Scholar
  4. 4.
    Jung, J., Nam, H., Lee, B., Byun, J.O., Kim, N.S.: Fiber bragg grating temperature sensor with controllable sensitivity. Appl. Opt. 38, 2752–2754 (1999)CrossRefGoogle Scholar
  5. 5.
    Wu, Q., Hatta, A.M., Wang, P., Semenova, Y., Farrell, G.: Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing. IEEE Photonics Technol. Lett. 23(2), 130–132 (2011)CrossRefGoogle Scholar
  6. 6.
    Shen, C., Zhong, C.: Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement. Sensor Actuators A Phys. 170(1–2), 51–54 (2011)CrossRefGoogle Scholar
  7. 7.
    Fu, H., Shu, X., Suo, R., Zhang, L., He, S., Bennion, I.: Transversal-load sensor by using local pressure on a chirped fiber bragg grating. IEEE Sensors J. 10(6), 1140–1141 (2010)CrossRefGoogle Scholar
  8. 8.
    Guru Prasad, A.S., Omkar, S.N., Vikranth, H.N., Anil, V., Chethana, K., Asokan, S.: Design and development of Fiber Bragg Grating sensing plate for plantar strain measurement and postural stability analysis. Measurement 47, 789–793 (2014)CrossRefGoogle Scholar
  9. 9.
    Wang, Q., Zhang, L., Sun, C., Yu, Q.: Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement. IEEE Sensors J. 8(11), 1879–1883 (2008)CrossRefGoogle Scholar
  10. 10.
    Dziuda, L., Skibniewski, F.W., Krej, M., Lewandowski, J.: Monitoring respiration and cardiac activity using fiber bragg grating-based sensor. Biomed. Eng. 59(7), 1934–1942 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hsi-Shan Huang
    • 1
    Email author
  • Jeng-Shyang Pan
    • 1
  • Yen-Ming Tseng
    • 1
  • Weidong Fang
    • 1
  • Ruey-Ming Shih
    • 2
  1. 1.School of Information Science and EngineeringFujian University of TechnologyFuzhouChina
  2. 2.School of DesignFujian University of TechnologyFuzhouChina

Personalised recommendations