Advertisement

A New Solution Method for a Class of Fuzzy Random Bilevel Programming Problems

  • Aihong RenEmail author
  • Xingsi Xue
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 81)

Abstract

This paper investigates a kind of bilevel programming with fuzzy random variable coefficients in both objective functions and the right hand side of constraints. On the basis of the notion of Er-expected value of fuzzy random variable, the upper and lower level objective functions can be replaced with their corresponding Er-expected values. In terms of probability over defuzzified operator, fuzzy stochastic constraints can be converted into the equivalent forms. Based on these, the fuzzy random bilevel programming problem can be transformed into its deterministic one. Then we suggest differential evolution algorithm to solve the final crisp problem. Finally, a numerical example is given to illustrate the proposed method.

Keywords

Bilevel programming Fuzzy random variable Er-expected value of fuzzy random variable Differential evolution algorithm 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.61602010), Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2017JQ6046) and Science Foundation of Baoji University of Arts and Sciences (Grant No.ZK16049).

References

  1. 1.
    Zhang, G.Q., Gao, Y., Lu, J.: Competitive strategic bidding optimization in electricity markets using bilevel programming and swarm technique. IEEE Trans. Industr. Electron. 58(6), 2138–2146 (2011)CrossRefGoogle Scholar
  2. 2.
    Gzara, F.: A cutting plane approach for bilevel hazardous material transport network design. Oper. Res. Lett. 41(1), 40–46 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fontaine, P., Minner, S.: Benders decomposition for discrete-continuous linear bilevel problems with application to traffic network design. Transp. Res. Part B Methodol. 70, 163–172 (2014)CrossRefGoogle Scholar
  4. 4.
    Cecchini, M., Ecker, J., Kupferschmid, M., Leitch, R.: Solving nonlinear principal-agent problems using bilevel programming. Eur. J. Oper. Res. 230(2), 364–373 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52(3), 333–359 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Colson, B., Marcotte, P., Savard, G.: Bilevel programming a survey. 4OR 3(2), 87–107 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers, Dordrecht, Boston, London (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dordrecht, Boston, London (2002)zbMATHGoogle Scholar
  10. 10.
    Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Networks. Kluwer Academic Publishers, Springer, Berlin (2015)Google Scholar
  11. 11.
    Zhang, G.Q., Lu, J., Dillon, T.: Fuzzy linear bilevel optimization: solution concepts, approaches and applications. Stud. Fuzziness Soft Comput. 215, 351–379 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gao, Y., Zhang, G.Q., Ma, J., Lu, J.: A \(\lambda \)-cut and goal-programming-based algorithm for fuzzy-linear multiple-objective bilevel optimization. IEEE Trans. Fuzzy Syst. 18(1), 1–13 (2010)CrossRefGoogle Scholar
  13. 13.
    Sakawa, M., Katagiri, H.: Interactive fuzzy programming based on fractile criterion optimization model for two-level stochastic linear programming problems. Cybern. Syst. 41(7), 508–521 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Yano, H.: Hierarchical Multiobjective stochastic linear programming problems considering both probability maximization and fractile optimization. IAENG Int. J. Appl. Mathe. 42(2), 91–98 (2012)MathSciNetGoogle Scholar
  15. 15.
    Kwakernaak, H.: Fuzzy random variables-I. definitions and theorems. Inf. Sci. 15(1), 1–29 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sakawa, M., Katagiri, H.: Stackelberg solutions for fuzzy random two-level linear programming through level sets and fractile criterion optimization. CEJOR 20, 101–117 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sakawa, M., Katagiri, H.: Interactive fuzzy random cooperative two-level linear programming through level sets based probability maximization. Expert Syst. Appl. 40, 1400–1406 (2013)CrossRefGoogle Scholar
  18. 18.
    Ren, A., Wang, Y.P.: Optimistic Stackelberg solutions to bilevel linear programming with fuzzy random variable coefficients. Knowl.-Based Syst. 67, 206–217 (2014)CrossRefGoogle Scholar
  19. 19.
    Yager, R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24, 143–161 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Luhandjula, M.K.: Fuzziness and randomness in an optimization framework. Fuzzy Sets Syst. 77, 291–297 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Eshghi, K., Nematian, J.: Special classes of mathematical programming models with fuzzy random variables. J. Intell. Fuzzy Syst. 19(2), 131–140 (2008)zbMATHGoogle Scholar
  22. 22.
    Wang, G.Y., Zhong, Q.: Linear programming with fuzzy random variable coefficients. Fuzzy Sets Syst. 57(3), 295–311 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Liu, Y.K., Liu, B.: A class of fuzzy random optimization: expected value models. Inf. Sci. 155, 89–102 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Aiche, F., Abbas, M., Dubois, D.: Chance-constrained programming with fuzzy stochastic coefficients. Fuzzy Optim. Decis. Making 12, 125–152 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ren, A.H., Wang, Y.P.: An interval programming approach for bilevel linear programming problem with fuzzy random coefficients. In: 2013 IEEE Congress on Evolutionary Computation (CEC2013), pp. 462–469 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsBaoji University of Arts and SciencesBaojiChina
  2. 2.College of Information Science and EngineeringFujian University of TechnologyFuzhouChina
  3. 3.Fujian Provincial Key Laboratory of Big Data Mining and ApplicationsFujian University of TechnologyFuzhouChina

Personalised recommendations