Molecular Mapping of Genes and QTLs in Pigeonpea

Part of the Compendium of Plant Genomes book series (CPG)


Pigeonpea is one of the most important grain legume crops grown in arid and semiarid regions of the world. There is an increasing demand for the development of new cultivars with high yield potential and better adaptability to adverse environmental conditions. Recent advances in genomics tools and techniques have helped to develop large repertoire of molecular markers and genotypic platforms. The availability of molecular markers facilitated the development of high-density genetic maps that have been used in discovery of important/major QTLs for targeted traits in pigeonpea. In addition, the availability of high-throughput genotypic platforms helped to generate whole genome genotypic data in high-throughput manner necessary for whole genome scanning/genome-wide association mapping of economically important traits. The advances in comparative genomics, transcriptomics, and whole genome sequencing have uncovered thousands of useful genes including some genes unique to pigeonpea crop. The availability of wealth of genomics resources/information will facilitate molecular breeding aimed at improving production and productivity of pigeonpea in extreme environments of arid and semiarid regions of the world.


Pigeonpea Gene discovery QTL mapping Association mapping Molecular breeding 


  1. Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh R et al (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeon pea (Cajanus spp.). BMC Plant Biol 11:56CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bohra A, Saxena RK, Gnanesh BN, Saxena KB, Byregowda M, Rathore A et al (2012) An intra-specific consensus genetic map of pigeon pea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations. Theor Appl Genet 125:1325–1338CrossRefPubMedPubMedCentralGoogle Scholar
  3. Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111CrossRefPubMedGoogle Scholar
  4. Deeplanaik N, Kumaran RC, Venkatarangaiah K, Shivashankar SKH, Doddamani D, Telkar S (2013) Expression of drought responsive genes in pigeon pea and in silico comparison with soybean cDNA library. J Crop Sci Biotechnol 16:243–251CrossRefGoogle Scholar
  5. Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R et al (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeon pea (Cajanus cajan L.). DNA Res 18:153–164CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN et al (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeon pea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol 11:17CrossRefPubMedPubMedCentralGoogle Scholar
  7. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  8. Gnanesh BN, Bohra A, Sharma M, Byregowda M, Pande S, Wesley V et al (2011) Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeon pea [Cajanus cajan (L.) Millsp.]. Field Crops Res 123:53–61CrossRefGoogle Scholar
  9. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485CrossRefPubMedGoogle Scholar
  10. Gupta PK, Kulwal PL, Mir RR (2013) QTL mapping: methodology and applications in cereal breeding. In: Gupta PK, Varshney RK (eds) Cereal Genomics II. Springer, Netherlands, pp 275–318CrossRefGoogle Scholar
  11. Kotresh H, Fakrudin B, Punnuri SM, Rajkumar BK, Thudi M, Paramesh H et al (2006) Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeon pea (Cajanus cajan L. Millsp.). Euphytica 149:113–120CrossRefGoogle Scholar
  12. Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B, Kramer R et al (2012) A comprehensive transcriptome assembly of pigeon pea (Cajanus cajan L.) using Sanger and second-generation sequencing platforms. Mol Plant 5:1020–1028CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kumar R, Yadav S, Shrinivas, Kumar Srivastava A, Shitole V, Naik GR (2015) Transcriptome of pigeon pea roots under water deficit analyzed by suppression subtractive hybridization. J Agri Sci Technol 17:1333–1345Google Scholar
  14. Kumawat G, Raje RS, Bhutani S, Pal JK, Mithra ASVCR, Gaikwad K, Sharma TR, Singh NK (2012) Molecular mapping of QTLs for plant type and earliness traits in pigeon pea (Cajanus cajan L. Millsp.). BMC Genet 13:84CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mir RR, Saxena RK, Saxena KB, Upadhyaya HD, Kilian A, Cook DR et al (2013) Whole-genome scanning for mapping determinacy in pigeon pea (Cajanus spp.). Plant Breed 132:472–478Google Scholar
  17. Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S et al (2014) Candidate gene analysis for determinacy in pigeon pea (Cajanus spp.). Theor Appl Genet 127:2663–2678CrossRefPubMedPubMedCentralGoogle Scholar
  18. Mohar S, Narinder KG, Mukesh KR, Om PD, Dutta M et al (2014) Pigeon pea genetic resources and its utilization in India:current status and future prospects. J Plant Sci Res 1:107Google Scholar
  19. Mula MG, Saxena KB (2010) Lifting the level of awareness on pigeon pea-a global perspective. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, IndiaGoogle Scholar
  20. Prasanthi L, Reddy BVB, Rekha Rani K, Naidu PH (2009) Molecular marker for screening Fusarium wilt resistance in pigeon pea [Cajanus cajan (L.) Millspaugh]. Legume Res 32:19–24Google Scholar
  21. Priyanka B, Sekhar K, Sunita T, Reddy VD, Rao KV (2010) Characterization of expressed sequence tags (ESTs) of pigeon pea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol Genet Genomics 283:273–287CrossRefPubMedGoogle Scholar
  22. Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ et al (2010) The first set of EST resource for gene discovery and marker development in pigeon pea (Cajanus cajan L.). BMC Plant Biol 10:1CrossRefGoogle Scholar
  23. Saxena KB, Ravikoti VJ, Sultana R (2010a) Quality nutrition through pigeon pea—a review. Health 2:1335–1344CrossRefGoogle Scholar
  24. Saxena RK, Prathima C, Saxena KB, Hoisington DA, Singh NK et al (2010b) Novel SSR markers for polymorphism detection in pigeon pea (Cajanus spp.). Plant Breed 129:142–148CrossRefGoogle Scholar
  25. Saxena RK, Cui X, Thakur V, Walter B, Close TJ, Varshney RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeon pea (Cajanus spp.). Funct Integr Genomics 11:651–657CrossRefPubMedPubMedCentralGoogle Scholar
  26. Saxena RK, Penmetsa RV, Upadhyaya HD, Kumar A, Carrasquilla-Garcia N, Schlueter J et al (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeon pea and comparative mapping in legumes. DNA Res 19:449–461CrossRefPubMedPubMedCentralGoogle Scholar
  27. Saxena RK, von Wettberg E, Upadhyaya HD, Sanchez V, Songok S, Saxena KB et al (2014) Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS ONE 9:e88568CrossRefPubMedPubMedCentralGoogle Scholar
  28. Saxena RK, Saxena KB, Pazhamala LT, Patel K, Parupalli S, Sameerkumar CV, Varshney RK (2015) Genomics for greater efficiency in pigeon pea hybrid breeding. Front Plant Sci 6:793CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sekhar K, Priyanka B, Reddy VD, Rao KV (2010) Isolation and characterization of a pigeon pea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. Plant, Cell Environ 33:1324–1338Google Scholar
  30. Sharma M, Rathore A, Mangala UN, Ghosh R, Sharma S, Upadhyay HD et al (2012) New sources of resistance to Fusarium wilt and sterility mosaic disease in a mini-core collection of pigeon pea germplasm. Eur J Plant Pathol 133:707–714CrossRefGoogle Scholar
  31. Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S et al (2012) The first draft of the pigeon pea genome sequence. J Plant Biochem Biotechnol 21:98–112CrossRefPubMedGoogle Scholar
  32. Singh AK, Rai VP, Chand R, Singh RP, Singh MN (2013) Genetic diversity studies and identification of SSR markers associated with Fusarium wilt (Fusarium udum) resistance in cultivated pigeon pea (Cajanus cajan). J Genet 92:273–280CrossRefPubMedGoogle Scholar
  33. Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, et al. (2016) Next‐generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeon pea (Cajanus cajan). Plant Biotechnol J 14:1183–1194Google Scholar
  34. Smartt J (1990) Grain legumes: evaluation and genetic resources. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  35. Tamirisa S, Vudem DR, Khareedu VR (2014) Overexpression of pigeon pea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis. J Exp Bot 65:4769–4781Google Scholar
  36. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203CrossRefPubMedGoogle Scholar
  37. Van Der Maesen LJG (1990) Pigeon pea: Origin, history, evolution and taxonomy. In: Nene YL, Hall SD, Sheila VK (eds) The Pigeon pea. CAB International, Wallingford, UK, pp 15–46Google Scholar
  38. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530CrossRefPubMedGoogle Scholar
  39. Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S et al (2010a) pigeon pea genomics initiative (PGI): an international effort to improve crop productivity of pigeon pea (Cajanus cajan L.). Mol Breed 26:393–408CrossRefPubMedGoogle Scholar
  40. Varshney RK, Thundi M, May GD, Jackson SA (2010b) Legume genomics and breeding. Plant Breed Rev 33:257–304Google Scholar
  41. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK et al (2012a) Draft genome sequence of Pigeon pea (Cajanus cajan), an orphan legume crop of resource-poor farmer. Nat Biotechnol 30:83–89CrossRefGoogle Scholar
  42. Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK et al (2012b) Advances in genomics research and molecular breeding applications in SAT legume crops by using next generation sequencing and high-throughput genotyping technologies. J Biosci 37:811–820CrossRefPubMedGoogle Scholar
  43. Vavilov (1928) Geographische Genzentren unserer Kulturpflanzen; Verhandlungen des V Internationalen Kongresses fur Vererbungswissenschaft. Berlin, Germany 1927: 342–369 Google Scholar
  44. Yang S, Pang W, Harper J, Carling J, Wenzl P, Huttner E et al (2006) Low level of genetic diversity in cultivated pigeon pea compared to its wild relatives is revealed by diversity arrays technology (DArT). Theor Appl Genet 113:585–595CrossRefPubMedGoogle Scholar
  45. Yang S, Saxena RK, Kulwal PL, Ash GJ, Dubey A, Harper JD et al (2011) First genetic map of pigeon pea based on diversity array technology (DArT) markers. J Genet 90:103–109CrossRefPubMedGoogle Scholar
  46. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Plant Breeding and GeneticsSher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K)KashmirIndia
  2. 2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia

Personalised recommendations