Linear Algebra pp 323-376 | Cite as

Orthogonal Matrices and Quadratic Forms

Part of the Compact Textbooks in Mathematics book series (CTM)


In Definition  1.4.2 we introduced the symmetric matrices as those square matrices that are invariant under the transpose operation. That is, those matrices A in \(\mathcal{M}_{n}(\mathbb{K})\) satisfying A = A T . This class of matrices has very important properties: for instance, they are diagonalizable (Theorem  7.4.6) and if the entries of a symmetric matrix are real, then it has only real eigenvalues (Theorem  7.4.5). Here we will study another class of matrices, whose inverses coincide with their transpose. These matrices are called the orthogonal matrices. In this section we restrict ourselves to the case of matrices with real entries. But all the results can be easily extended to the matrices with complex entries.


  1. 1.
    H. Anton, C. Rorres, Elementary Linear Algebra: with Supplemental Applications, 11th edn. (Wiley, Hoboken, 2011)zbMATHGoogle Scholar
  2. 2.
    M. Artin, Algebra, 2nd edn. (Pearson, Boston, 2011)zbMATHGoogle Scholar
  3. 3.
    S. Axler, Linear Algebra Done Right. Undergraduate Texts in Mathematics, 2nd edn. (Springer, New York, 1997)Google Scholar
  4. 4.
    E.F. Beckenbach, R. Bellman, Inequalities, vol. 30 (Springer, New York, 1965)CrossRefzbMATHGoogle Scholar
  5. 5.
    F. Boschet, B. Calvo, A. Calvo, J. Doyen, Exercices d’algèbre, 1er cycle scientifique, 1er année (Librairie Armand Colin, Paris, 1971)Google Scholar
  6. 6.
    L. Brand, Eigenvalues of a matrix of rank k. Am. Math. Mon. 77(1), 62 (1970)Google Scholar
  7. 7.
    G.T. Gilbert, Positive definite matrices and Sylvester’s criterion. Am. Math. Mon. 98(1), 44–46 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R. Godement, Algebra (Houghton Mifflin Co., Boston, MA, 1968)zbMATHGoogle Scholar
  9. 9.
    J. Grifone, Algèbre linéaire, 4th edn. (Cépaduès–éditions, Toulouse, 2011)zbMATHGoogle Scholar
  10. 10.
    G.N. Hile, Entire solutions of linear elliptic equations with Laplacian principal part. Pac. J. Math 62, 127–140 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2013)zbMATHGoogle Scholar
  12. 12.
    D. Kalman, J.E. White, Polynomial equations and circulant matrices. Am. Math. Mon. 108(9), 821–840 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P. Lancaster, M. Tismenetsky, The Theory of Matrices, 2nd edn. (Academic Press, Orlando, FL, 1985)zbMATHGoogle Scholar
  14. 14.
    S. Lang, Linear Algebra. Undergraduate Texts in Mathematics, 3rd edn. (Springer, New York, 1987)Google Scholar
  15. 15.
    L. Lesieur, R. Temam, J. Lefebvre, Compléments d’algèbre linéaire (Librairie Armand Colin, Paris, 1978)zbMATHGoogle Scholar
  16. 16.
    H. Liebeck, A proof of the equality of column and row rank of a matrix. Am. Math. Mon. 73(10), 1114 (1966)Google Scholar
  17. 17.
    C.D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, Philadelphia, PA, 2000)CrossRefGoogle Scholar
  18. 18.
    D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series), vol. 61 (Kluwer Academic, Dordrecht, 1993)Google Scholar
  19. 19.
    C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    J.M. Monier, Algèbre et géométrie, PC-PST-PT, 5th edn. (Dunod, Paris, 2007)Google Scholar
  21. 21.
    P.J. Olver, Lecture notes on numerical analysis, Accessed Sept 2016
  22. 22.
    F. Pécastaings, Chemins vers l’algèbre, Tome 2 (Vuibert, Paris, 1986)Google Scholar
  23. 23.
    M. Queysanne, Algebre, 13th edn. (Librairie Armand Colin, Paris, 1964)zbMATHGoogle Scholar
  24. 24.
    J. Rivaud, Algèbre linéaire, Tome 1, 2nd edn. (Vuibert, Paris, 1982)zbMATHGoogle Scholar
  25. 25.
    S. Roman, Advanced Linear Algebra. Graduate Texts in Mathematics, vol. 135 (Springer, New York, 2008)Google Scholar
  26. 26.
    H. Roudier, Algèbre linéaire: cours et exercices, 3rd edn. (Vuibert, Paris, 2008)zbMATHGoogle Scholar
  27. 27.
    B. Said-Houari, Differential Equations: Methods and Applications. Compact Textbook in Mathematics (Springer, Cham, 2015)Google Scholar
  28. 28.
    D. Serre, Matrices. Theory and Applications. Graduate Texts in Mathematics, vol. 216, 2nd edn. (Springer, New York, 2010)Google Scholar
  29. 29.
    G. Strang, Linear Algebra and Its Applications, 3rd edn. (Harcourt Brace Jovanovich, San Diego, 1988)zbMATHGoogle Scholar
  30. 30.
    V. Sundarapandian, Numerical Linear Algebra (PHI Learning Pvt. Ltd., New Delhi, 2008)zbMATHGoogle Scholar
  31. 31.
    H. Valiaho, An elementary approach to the Jordan form of a matrix. Am. Math. Mon. 93(9), 711–714 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics, College of SciencesUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations