Advertisement

Linear Algebra pp 199-225

# Linear Transformations

Chapter
• 4.4k Downloads
Part of the Compact Textbooks in Mathematics book series (CTM)

## Abstract

In Chap. , we defined a matrix as a rectangular array of numbers (Definition ). In this chapter, we give the mathematical definition of matrices through linear transformations. We will see that the multiplication of two matrices is equivalent to the composition of two linear transformations. One of the important properties of linear transformations is that they carry some algebraic properties from one vector space to another. Sometimes, this will provide us with the necessary knowledge of some vector spaces, without even studying them in detail, but by rather seeing them as the result of a linear transformation of other well-known vector spaces.

## References

1. 1.
H. Anton, C. Rorres, Elementary Linear Algebra: with Supplemental Applications, 11th edn. (Wiley, Hoboken, 2011)
2. 2.
M. Artin, Algebra, 2nd edn. (Pearson, Boston, 2011)
3. 3.
S. Axler, Linear Algebra Done Right. Undergraduate Texts in Mathematics, 2nd edn. (Springer, New York, 1997)Google Scholar
4. 4.
E.F. Beckenbach, R. Bellman, Inequalities, vol. 30 (Springer, New York, 1965)
5. 5.
F. Boschet, B. Calvo, A. Calvo, J. Doyen, Exercices d’algèbre, 1er cycle scientifique, 1er année (Librairie Armand Colin, Paris, 1971)Google Scholar
6. 6.
L. Brand, Eigenvalues of a matrix of rank k. Am. Math. Mon. 77(1), 62 (1970)Google Scholar
7. 7.
G.T. Gilbert, Positive definite matrices and Sylvester’s criterion. Am. Math. Mon. 98(1), 44–46 (1991)
8. 8.
R. Godement, Algebra (Houghton Mifflin Co., Boston, MA, 1968)
9. 9.
J. Grifone, Algèbre linéaire, 4th edn. (Cépaduès–éditions, Toulouse, 2011)
10. 10.
G.N. Hile, Entire solutions of linear elliptic equations with Laplacian principal part. Pac. J. Math 62, 127–140 (1976)
11. 11.
R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2013)
12. 12.
D. Kalman, J.E. White, Polynomial equations and circulant matrices. Am. Math. Mon. 108(9), 821–840 (2001)
13. 13.
P. Lancaster, M. Tismenetsky, The Theory of Matrices, 2nd edn. (Academic Press, Orlando, FL, 1985)
14. 14.
S. Lang, Linear Algebra. Undergraduate Texts in Mathematics, 3rd edn. (Springer, New York, 1987)Google Scholar
15. 15.
L. Lesieur, R. Temam, J. Lefebvre, Compléments d’algèbre linéaire (Librairie Armand Colin, Paris, 1978)
16. 16.
H. Liebeck, A proof of the equality of column and row rank of a matrix. Am. Math. Mon. 73(10), 1114 (1966)Google Scholar
17. 17.
C.D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, Philadelphia, PA, 2000)
18. 18.
D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series), vol. 61 (Kluwer Academic, Dordrecht, 1993)Google Scholar
19. 19.
C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)
20. 20.
J.M. Monier, Algèbre et géométrie, PC-PST-PT, 5th edn. (Dunod, Paris, 2007)Google Scholar
21. 21.
P.J. Olver, Lecture notes on numerical analysis, http://www.math.umn.edu/~olver/num.html. Accessed Sept 2016
22. 22.
F. Pécastaings, Chemins vers l’algèbre, Tome 2 (Vuibert, Paris, 1986)Google Scholar
23. 23.
M. Queysanne, Algebre, 13th edn. (Librairie Armand Colin, Paris, 1964)
24. 24.
J. Rivaud, Algèbre linéaire, Tome 1, 2nd edn. (Vuibert, Paris, 1982)
25. 25.
S. Roman, Advanced Linear Algebra. Graduate Texts in Mathematics, vol. 135 (Springer, New York, 2008)Google Scholar
26. 26.
H. Roudier, Algèbre linéaire: cours et exercices, 3rd edn. (Vuibert, Paris, 2008)
27. 27.
B. Said-Houari, Differential Equations: Methods and Applications. Compact Textbook in Mathematics (Springer, Cham, 2015)Google Scholar
28. 28.
D. Serre, Matrices. Theory and Applications. Graduate Texts in Mathematics, vol. 216, 2nd edn. (Springer, New York, 2010)Google Scholar
29. 29.
G. Strang, Linear Algebra and Its Applications, 3rd edn. (Harcourt Brace Jovanovich, San Diego, 1988)
30. 30.
V. Sundarapandian, Numerical Linear Algebra (PHI Learning Pvt. Ltd., New Delhi, 2008)
31. 31.
H. Valiaho, An elementary approach to the Jordan form of a matrix. Am. Math. Mon. 93(9), 711–714 (1986)

## Copyright information

© Springer International Publishing AG 2017

## Authors and Affiliations

1. 1.Department of Mathematics, College of SciencesUniversity of SharjahSharjahUnited Arab Emirates