Skip to main content

A Novel Strategy for Antimicrobial Agents: Silver Nanoparticles

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Metals, such as copper, gold, and silver, have typically been used for the synthesis of stable dispersions of nanoparticles. Metallic nanoparticles have high biocompatibility owing to their high surface area to lack of charge, volume ratio, and lack of toxicity to humans. In particular, silver nanoparticles (nano-Ag ) are widely used in the field of pathogenic microbiology owing to their potent antimicrobial activities. Their antimicrobial efficacy has been evaluated against bacteria, viruses, and other eukaryotic microbes based on interactions with membranes or cell walls, DNA, or proteins. Nano-Ag exerts antimicrobial activity via a variety of mechanisms, e.g., membrane disruption, apoptosis , and synergy. Accordingly, nano-Ag has wide applications ranging from burn treatments to silver-coated medicinal devices, such as coating stainless steel materials, dental materials, nanogels, nanolotions, etc. Nano-Ag is a potential alternative strategy for the development of cosmetic and pharmacological agents for pathogens that are resistant to existing antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DHR-123:

Dihydrorhodamine

DiBAC4(3):

Bis-(1,3-dibutylbarbituric acid)-trimethine oxonol

DiOC6(3):

3,3′-dihexyloxacarbocyanine iodide

DPH:

1,6-diphenyl-1,3,5-hexatriene

HPF:

3′-(p-hydroxyphenyl) fluorescein

Nano-Ag:

Silver nanoparticles

ROS:

Reactive oxygen species

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

References

  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Argüelles JC. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology. 2002;148:2599–606.

    Article  CAS  PubMed  Google Scholar 

  • Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir. 2000;16:2789–96.

    Article  CAS  Google Scholar 

  • Anantharaman A, Rizvi MS, Sahal D. Synergy with rifampin and kanamycin enhances potency, kill kinetics, and selectively of de novo-designed antimicrobial peptides. Antimicrob Agents Chemother. 2010;54:1693e1699.

    Article  Google Scholar 

  • Aruguete DM, Kim B, Hochella MF Jr, Ma Y, Cheng Y, Hoegh A, Liu J, Pruden A. Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Process Impacts. 2013;5:93–102.

    Article  Google Scholar 

  • Benyagoub M, Willemot C, Bélanger RR. Influence of a subinhibitory dose of antifungal fatty acids from Sporothrix flocculosa on cellular lipid composition in fungi. Lipids. 1996;31:1077–82.

    Article  CAS  PubMed  Google Scholar 

  • Bolintineanu D, Hazrati E, Davis HT, Lehrer RI, Kaznessis YN. Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides. 2010;31:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Cerbon J, Calderon V. Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential. Biochim Biophys Acta. 1991;1067:139–44.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25:135101.

    Article  PubMed  Google Scholar 

  • Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2007;176:1–12.

    Article  PubMed  Google Scholar 

  • Costa V, Moradas-Ferreira P. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights in to aging, apoptosis and disease. Mol Asp Med. 2001;22:217–46.

    Article  CAS  Google Scholar 

  • Dejean LM, Martinez-Caballero S, Kinnally KW. Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ. 2006;13:1387–95.

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12:789–99.

    Article  PubMed  Google Scholar 

  • Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science. 1996;274:1664–72.

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Takesako K, Kato I, Yamaguchi H. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1997;41:672–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998;5:551–62.

    Article  CAS  PubMed  Google Scholar 

  • Fernández JG, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanz MI. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem. 2016;51:1306–13.

    Article  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA. Synthesis of silver nanoparticles using Dioscorea bulbifera Tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine. 2012;7:483–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh IN, Patil SD, Sharma TK, Srivastava SK, Pathania R, Navani NK. Synergistic action of cinnamaldehyde with silver nanoparticles against spore-forming bacteria: a case for judicious use of silver nanoparticles for antibacterial applications. Int J Nanomedicine. 2013;8:4721–31.

    PubMed  PubMed Central  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 2007;18:604–11.

    Google Scholar 

  • Gordon O, Vig Slenters T, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother. 2010;54:4208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003;10:709–17.

    Article  CAS  PubMed  Google Scholar 

  • Grigor'eva A, Saranina I, Tikunova N, Safonov A, Timoshenko N, Rebrov A, Ryabchikova E. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. Biometals. 2013;26:479–88.

    Article  PubMed  Google Scholar 

  • Gurunathan S, Lee KJ, Kalimuthu K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30:6341–50.

    Article  CAS  PubMed  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511.

    Article  CAS  PubMed  Google Scholar 

  • Haruna S, Kuroi R, Kajiwara K, Hashimoto R, Matsugo S, Tokumaru S, Kojo S. Induction of apoptosis in HL-60 cells by photochemically generated hydroxyl radicals. Bioorg Med Chem Lett. 2002;12:675–6.

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012;279:1327–38.

    Article  CAS  PubMed  Google Scholar 

  • Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55:59–63.

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski W, Bilinski T, Bartosz G. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med. 2000;28:659–64.

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22:235–42.

    Article  CAS  PubMed  Google Scholar 

  • Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. Detection of apoptosis by TUNEL assay. Methods Mol Biol. 2012;887:41–7.

    Article  CAS  PubMed  Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I. ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta. 2008;1780:892–8.

    Article  CAS  PubMed  Google Scholar 

  • Leaper DL. Silver dressings: their role in wound management. Int Wound J. 2006;3:282–94.

    Article  PubMed  Google Scholar 

  • Lee W, Kim KJ, Lee DG. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals. 2014;27:1191–201.

    Article  CAS  PubMed  Google Scholar 

  • Léger T, Garcia C, Ounissi M, Lelandais G, Camadro JM. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. Mol Cell Proteomics. 2015;14:93–108.

    Article  PubMed  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85:1115–22.

    Article  CAS  PubMed  Google Scholar 

  • Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals. 2011;24:135–41.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen Q, Zhao J, Urmila K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep. 2015;5:11033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao RS, Rennie RP, Talbot JA. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob Agents Chemother. 1999;43:1034–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantareva V, Kussovski V, Angelov I, Borisova E, Avramov L, Schnurpfeil G, Wöhrle D. Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem. 2007;15:4829–35.

    Article  CAS  PubMed  Google Scholar 

  • Markowska K, Grudniak AM, Krawczyk K, Wróbel I, Wolska KI. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeruginosa by silver nanoparticles. J Med Microbiol. 2014;63:849–54.

    Article  CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, BV, Bhadra MP, Sreedhar B, Patra CR. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4:316–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Novogrodsky A, Ravid A, Rubin AL, Stenzel KH. Hydroxyl radical scavengers inhibit lymphocyte mitogenesis. Proc Natl Acad Sci U S A. 1982;79:1171–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega F, Fernández-Baldo M, Fernández G, Serrano M, Sanz MI, Diaz-Mochón J, Lorente J, Raba J. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine. 2015;10:2021–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panáček A, Smékalová M, Večeřová R, Bogdanová K, Röderová M, Kolář M, Kilianová M, Hradilová Š, Froning JP, Havrdová M, Prucek R, Zbořil R, Kvítek L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multi resistant Enterobacteriaceae. Colloids Surf B: Biointerfaces. 2016;142:392–9.

    Article  PubMed  Google Scholar 

  • Paulo L, Ferreira S, Gallardo E, Queiroz JA, Domingues F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J Microbiol Biotechnol. 2010;26:1533–8.

    Article  CAS  Google Scholar 

  • Pereira C, Camougrand N, Manon S, Sousa MJ, Côrte-Real M. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol. 2007;66:571–82.

    Article  CAS  PubMed  Google Scholar 

  • Portet T, Camps I, Febrer F, Escoffre JM, Favard C, Rols MP, Dean DS. Visualization of membrane loss during the shrinkage of giant vesicles under electropulsation. Biophys J. 2009;96:4109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhu S, Poulose E. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32–5.

    Article  Google Scholar 

  • Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B: Biointerfaces. 2013;102:300–6.

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol. 2016;42:46–56.

    CAS  PubMed  Google Scholar 

  • Reiter J, Herker E, Madeo F, Schmitt MJ. Viral killer toxins induce caspase mediated apoptosis in yeast. J Cell Biol. 2005;168:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA. Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater. 2006;29:95–9.

    Article  Google Scholar 

  • Rollet-Labelle E, Grange MJ, Elbim C, Marquetty C, Gougerot-Pocidalo MA, Pasquier C. Hydroxyl radical as a potential intracellular mediator of polymorphonuclear neutrophil apoptosis. Free Radic Biol Med. 1998;24:563–72.

    Article  CAS  PubMed  Google Scholar 

  • Sahu N, Soni D, Chandrashekhar B, Sarangi BK, Satpute D, Pandey RA. Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity. Bioprocess Biosyst Eng. 2013;36:999–1004.

    Article  CAS  PubMed  Google Scholar 

  • Samuel T, Weber HO, Funk JO. Linking DNA damage to cell cycle checkpoints. Cell Cycle. 2002;1:162–8.

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145:83–96.

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Nalwa HS. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol. 2011;7:489–503.

    Article  CAS  PubMed  Google Scholar 

  • Smrz D, Dráberová L, Dráber P. Non-apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol-anchored proteins. J Biol Chem. 2007;282:10487–97.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science. 2013;341:403–6.

    Article  CAS  PubMed  Google Scholar 

  • Vincent M, England LS, Trevors JT. Cytoplasmic membrane polarization in gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline. Biochim Biophys Acta. 2004;1672:131–4.

    Article  CAS  PubMed  Google Scholar 

  • Wadskog I, Maldener C, Proksch A, Madeo F, Adler L. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell. 2004;15:1436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71:7589–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 2009;20:085102.

    Article  PubMed  Google Scholar 

  • Yao G, Yang L, Hu Y, Liang J, Liang J, Hou Y. Nonylphenol-induced thymocyte apoptosis involved caspase-3 activation and mitochondrial depolarization. Mol Immunol. 2006;43:915–26.

    Article  CAS  PubMed  Google Scholar 

  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep. 2012;39:9193–201.

    Article  CAS  PubMed  Google Scholar 

  • Yu SP. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol. 2003;70:363–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, H., Lee, D.G. (2017). A Novel Strategy for Antimicrobial Agents: Silver Nanoparticles. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_8

Download citation

Publish with us

Policies and ethics