Skip to main content

Bio-distribution and Toxicity of Noble Metal Nanoparticles in Humans

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Nanotechnology is attracting the interest of scientists since the last few decades and is the technology of twenty-first century. It deals with the materials having at least one dimension in the range of nanometre scale. There is developing enthusiasm towards the application of nanotechnology in diverse fields. Carbon nanotubes, dendrimers, quantum dots and metal nanoparticles are mostly preferred for applications in various fields. Among them metal nanoparticles, especially the noble metallic nanoparticles, are of great importance due to their ease of synthesis, characterization, surface functionalization and size- and shape-dependent unique optoelectronic properties. They include silver, gold, platinum, palladium and rhodium nanoparticles. But with their increased use and likelihood of potential exposure, the concerns over their potential risk are also rising. Many studies have highlighted the toxicological considerations of those nanoparticles.

The present chapter showcases some of the key studies on the in vitro toxicity of noble metal nanoparticles by using human cell lines. It is general observation that toxicity of noble nanoparticles occurs due to exposure mainly via three routes, i.e. through injection or damaged skin, ingestion with food so as to reach gastrointestinal tract and inhalation causing accumulation in the respiratory tract. Hence, in vitro systems representing each of these exposure routes are generally exploited for finding the risk. Here, we discuss several critical investigations exploring the nanoparticle-wise toxicity. The goal is to explore the current knowledge about the potential risk of noble nanoparticles while drawing the general cytosolic and molecular mechanism lying behind the induction of harmful effects on various cell models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Aragao-Santiago L, Hillaireau H, Grabowski N, Mura S, Nascimento TL, Dufort S, Coll JL, Tsapis N, Fattal E. Compared in vivo toxicity in mice of lung delivered biodegradable and non-biodegradable nanoparticles. Nanotoxicology. 2016;10(3):292–302.

    Article  CAS  PubMed  Google Scholar 

  • AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Xinyi N, Hande MP, Valiyaveettil S. DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine (Lond). 2010;5:51–64.

    Article  CAS  Google Scholar 

  • Balbin A, Gaballo F, Ceballos-Torres J, Prashar S, Fajardo M, Kaluderović GN, GĂłmez-Ruiz S. Dual application of Pd nanoparticles supported on mesoporous silica SBA-15 and MSU-2: supported catalysts for C-C coupling reactions and cytotoxic agents against human cancer cell lines. RSC Adv. 2014;4:54775–87.

    Article  CAS  Google Scholar 

  • Bendale Y, Bendale V, Paul S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr Med Res. 2017. https://doi.org/10.1016/j.imr.2017.01.006.

  • Banerjee V, Das KP. Interaction of silver nanoparticles with proteins: a characteristic protein concentration dependent profile of spr signal. Colloids Surf B: Biointerfaces. 2013;111:71–9.

    Article  CAS  PubMed  Google Scholar 

  • Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles – potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4(5):521–31.

    Article  CAS  PubMed  Google Scholar 

  • Boscolo P, Bellante V, Leopold K, Maier M, di Giampaolo L, Antonucci A, Iavicoli I, Tobia L, Paoletti A, Montalti M, Petrarca C, Qiao N, Sabbioni E, Di Gioacchino M. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of non-atopic women. J Biol Regul Homeost Agents. 2010;24:207–14.

    CAS  PubMed  Google Scholar 

  • Boudreau MD, Imam MS, Paredes AM, Bryant MS, Cunningham CK, Felton RP, Jones MY, Davis KJ, Olson GR. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks. Toxicol Sci. 2016;150(1):131–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braakhuis HM, Gosens I, Krystek P, Boere JA, Cassee FR, Fokkens PH, Post JA, van Loveren H, Park MV. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol. 2014;11:49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carneiro ML, Nunes ES, Peixoto RC, Oliveira RG, Lourenço LH, da Silva IC, Simioni AR, Tedesco AC, de Souza AR, Lacava ZG, Báo SN. Free rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy. J Nanobiotechnol. 2011;9:11.

    Article  CAS  Google Scholar 

  • Chen R, Choudhary P, Schurr RN, Bhattacharya P, Brown JM, Ke PC. Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona. Appl Phys Lett. 2012;100(1):013703–34.

    Article  PubMed Central  Google Scholar 

  • Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2009;42(12):3066–74.

    Article  Google Scholar 

  • Çiftçi H, TĂĽrk M, Tamer U, Karahan S, Menemen Y. Silver nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turk J Biol. 2013;37:573–81.

    Article  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles. Small. 2005;1(3):325–7.

    Article  CAS  PubMed  Google Scholar 

  • de Souza AR, Coelho EP, Zyngier SB. Comparison of the anti-neoplastic effects of dirhodium(II) tetrapropionate and its adducts with nicotinate and isonicotinate anions in mice bearing Ehrlich tumors. Eur J Med Chem. 2006;41:1214–6.

    Article  PubMed  Google Scholar 

  • dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103:1931–44.

    Article  PubMed  Google Scholar 

  • Efeoglu E, Casey A, Byrne HJ. In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy. Analyst. 2016;141:5417–31.

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Tang S, Liu P, Fang X, Gong J, Zheng N. Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small. 2012;8:3816–22.

    Article  CAS  PubMed  Google Scholar 

  • Fard JK, Jafari S, Eghbal MA. Review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull. 2015;5(4):447–54.

    Article  Google Scholar 

  • Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol. 2007;84:415–30.

    Article  CAS  PubMed  Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22:64–75.

    Article  CAS  PubMed  Google Scholar 

  • Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, Haberl N, Brunelli A, Kreyling WG, Stone V. Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci. 2013;131(2):537–47.

    Article  CAS  PubMed  Google Scholar 

  • Ginzburg VV, Balijepalli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett. 2007;7:3716–22.

    Article  CAS  PubMed  Google Scholar 

  • Gupta I, Duran N, Rai M. Nano-silver toxicity: emerging concerns and consequences in human health. In: Cioffi, Rai M, editors. Nano-antimicrobials progress and prospects. Heidelberg/New York: Springer; 2012. p. 525–55.

    Chapter  Google Scholar 

  • Gupta I, Gaikwad S, Ingle A, Kon K, Duran N, Rai M. Nanotoxicity a mechanistic approach. In: Prokopovich P, editor. Biological and pharmaceutical applications of nanomaterials. Boca Raton, FL, USA: CRC Press; 2015. p 393–410.

    Google Scholar 

  • Gurr JR, Wang AS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213:66–73.

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Kim E, Han JW, Park JH, Kim JH. Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules. 2015;20:22476–98.

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Gurunathan S, Jeong J-K, Choi Y-J, Kwon D-N, Park J-K, Kim J-H. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line. Nanoscale Res Lett. 2014;9:459.

    Article  PubMed  PubMed Central  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–66.

    Article  CAS  PubMed  Google Scholar 

  • Hoet PHM, BrĂĽske-Hohlfeld I, Salata OV. Nanoparticles – known and unknown health risks. J Nanobiotechnol. 2004;2:12.

    Article  Google Scholar 

  • Hou W-C, Stuart B, Howes R, Zepp RG. Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ Sci Technol. 2013;47(14):7713–21.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen NR, Stoeger T, van den Brule S, Saber AT, Beyerle A, Vietti G, Mortensen A, Szarek J, Budtz HC, Kermanizadeh A, Banerjee A, Ercal N, Vogel U, Wallin HA, Møller P. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food Chem Toxicol. 2015;85:84–95.

    Article  CAS  PubMed  Google Scholar 

  • Jo M, Bae SH, Go MR, Kim HJ, Hwang YG, Choi SJ. Toxicity and biokinetics of colloidal gold nanoparticles. Nano. 2015;5:835–50.

    CAS  Google Scholar 

  • Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen. 2008;49:399–405.

    Article  CAS  PubMed  Google Scholar 

  • Katsaros N, Anagnostopoulou A. Rhodium and its compounds as potential agents in cancer treatment. Crit Rev Oncol Hematol. 2002;42:297–308.

    Article  CAS  PubMed  Google Scholar 

  • Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials. 2015;5(3):1163–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro. 2009;23:1076–84.

    Article  CAS  PubMed  Google Scholar 

  • Konieczny P, Goralczyk AG, Szmyd R, Skalniak L, Koziel J, Filon FL, Crosera M, Cierniak A, Zuba-Surma EK, Borowczyk J, Laczna E, Drukala J, Pyza E, Semik D, Woznicka O, Klein A, Jura J. Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomedicine. 2013;8:3963–75.

    PubMed  PubMed Central  Google Scholar 

  • Larsen EK, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Ostergaard L, Horsman MR, Besenbacher F, Howard KA, Kjems J. Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano. 2009;3(7):1947–51.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhu H, Zhu R, Sun X, Yao S, Wang S. Impact and mechanism of TiO2 nanoparticles on DNA synthesis in vitro. Sci China Ser B: Chem. 2008;51:367–72.

    Article  CAS  Google Scholar 

  • Lin JQ, Zhang HW, Chen Z, Zheng YG. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4:5421–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology. 2010;4:319–30.

    Article  CAS  PubMed  Google Scholar 

  • Mahato M, Pal P, Tah B, Ghosh M, Talapatra GB. Study of silver nanoparticle–hemoglobin interaction and composite formation. Colloids Surf B: Biointerfaces. 2011;88:141–9.

    Article  CAS  PubMed  Google Scholar 

  • Maurer-Jones MA, Bantz KC, Love SA, Marquis BJ, Haynes CL. Toxicity of therapeutic nanoparticles. Nanomedicine. 2009;4(2):219–41.

    Article  CAS  PubMed  Google Scholar 

  • Milića M, Leitingerb G, PaviÄŤića I, AvdiÄŤevićd MZ, Dobrovićd S, Goesslere W, Vinković VrÄŤeka I. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicity. 2015;35(6):581–92.

    Article  Google Scholar 

  • Mironava T, Simon M, Rafailovich MH, Rigas B. Platinum folate nanoparticles toxicity: cancer vs. normal cells. Toxicol In Vitro. 2013;27:882–9.

    Article  CAS  PubMed  Google Scholar 

  • Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5:846–53.

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.

    Article  CAS  PubMed  Google Scholar 

  • Painoa IMM, Marangonia VS, de Cássia Silva, de Oliveirab R, Maria L, Antunesb G, Zucolotto V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicol Lett. 2012;215:119–25.

    Article  Google Scholar 

  • Patel J, Patel A. Toxicity of nanomaterials on liver, kidney, and spleen. In: Pathak, Sutariya, editors. Bio-interaction of nanomaterial. Boca Raton: Taylor and Francis; 2014. p. 286–306.

    Google Scholar 

  • PEN. Project of the emerging nanotechnologies (PEN). 543. 2009. Available at http://www.nanotechproject.org.

  • Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small. 2006;2(6):766–73.

    Article  CAS  PubMed  Google Scholar 

  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011;201:92–100.

    Article  CAS  PubMed  Google Scholar 

  • Powell MC, Kanarek MS. Nanomaterial health effects-part 1: background and current knowledge. Wis Med J. 2006;105:16–20.

    Google Scholar 

  • Powell JJ, Faria N, Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34:226–33.

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Sakai N, Matsui Y, Nakayama A, Tsuda A, M Yoneda M. Functional dependent and size-dependent uptake of nanoparticles in pc12. J Phys Conf Ser. 2011;304:012049.

    Article  Google Scholar 

  • Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater. 2015, Article ID 136765, 9 pages, http://dx.doi.org/10.1155/2015/136765.

  • Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11:26.

    Google Scholar 

  • Shah SNA, Shah Z, Hussain M, Khan M. Hazardous effects of titanium dioxide nanoparticles in ecosystem. Bioinorg Chem Appl. 2017: Article ID 4101735, 12 pages, https://doi.org/10.1155/2017/4101735.

  • Shanthi K, Sreevani V, Vimala K, Kannan S. Cytotoxic effect of palladium nanoparticles synthesized from syzygium aromaticum aqueous extracts and induction of apoptosis in cervical carcinoma. Proc Nat Acad Sci India Sect B: Biol Sci. 2015; doi:10.1007/s40011-015-0678-7.

  • Shim K, Kim J, Heo YU, Jiang B, Li C, Shahabuddin M, Wu KC, Hossain MS, Yamauchi Y, Kim JH. Synthesis and cytotoxicity of dendritic platinum nanoparticles with HEK-293 cells. Chem Asian J. 2017;12:21–6.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett. 2016;11:482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares T, Ribeiro D, Proença C, ChistĂ© RC, Fernandes E, Freitas M. Size-dependent cytotoxicity of silver nanoparticles in human neutrophils assessed by multiple analytical approaches. Life Sci. 2016;145:247–54.

    Article  CAS  PubMed  Google Scholar 

  • Suliman YAO, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel SH. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol. 2015;30(2):149–60.

    Article  Google Scholar 

  • Sultana S, Djaker N, Boca-Farcau S, Salerno M, Charnaux N, Astilean S, Hlawaty H, de la Chapelle ML. Comparative toxicity evaluation of flowershaped and spherical gold nanoparticles on human endothelial cells. Nanotechnology. 2015 26 (2015) 055101 (12pp) doi:10.1088/0957-4484/26/5/055101.

  • Szentkuti L. Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. J Control Release. 1997;46:233–42.

    Article  CAS  Google Scholar 

  • Thakor AS, Paulmurugan R, Kempen P, Zavaleta C, Sinclair R, Massoud TF. Oxidative stress mediates the effects of Raman-active gold nanoparticles in human cells. Small. 2011;7(1):126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G. Cellular uptake and toxicity of AU(55) clusters. Small. 2005;1(9):841–4.

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Sanderson BJ, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res. 2007;628:99–106.

    Article  CAS  PubMed  Google Scholar 

  • Wang B, He X, Zhang ZY, Zhao YL, Feng WY. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res. 2012;46:761.

    Article  PubMed  Google Scholar 

  • Wang P, Wang X, Wang L, Hou X, Liu W, Chen C. Interaction of gold nanoparticles with proteins and cells. Sci Technol Adv Mater. 2015;16:034610. (15pp). doi:10.1088/1468-6996/16/3/034610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen Y, Geitner NK, Chen R, Ding F, Chen P, Andorfer RE, Govindan PN, Ke PC. Binding of cytoskeletal proteins with silver nanoparticles. RSC Adv. 2013;3:22002–7.

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2:2121–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao JW, Fan SX, Wang F, Sun LD, Zheng XY, Yan CH. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale. 2014;6(8):4345–51.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Peters JI, Williams RO III. Inhaled nanoparticles—a current review. Int J Pharm. 2008;356(1–2):239–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Raksha Pandit acknowledges the Department of Science and Technology, New Delhi, India, for DST INSPIRE fellowship, Grant No. IF150452 for pursuing her research work. We also thankfully acknowledge the financial assistance by UGC, New Delhi, under the Special Assistance Programme (SAP) DRS I. Mahendra Rai and Silvio Silvério da Silva thankfully acknowledge the financial help rendered by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil, process number 449609/2014-6)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, I., Ingle, A., Paralikar, P., Pandit, R., da Silva, S.S., Rai, M. (2017). Bio-distribution and Toxicity of Noble Metal Nanoparticles in Humans. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_21

Download citation

Publish with us

Policies and ethics