Skip to main content

Gold Nanoparticles in Molecular Diagnostics and Molecular Therapeutics

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Gold nanoparticles, due to their unique physicochemical properties, are among the most widely used nanoscale-based platforms for molecular diagnostics . The intrinsic chemical stability and apparent lack of toxicity have also prompted for application in therapeutics, e.g., for imaging modalities and as vectorization strategies for molecular modulators, i.e., gene silencing, specific targeting of cellular pathways, etc. Because of their common molecular ground, these approaches have been synergistically coupled together into molecular theranostic systems that allow for radical new in vivo diagnostics modalities with simultaneous tackling of molecular disequilibria leading to disease. Despite this tremendous potential, gold nanoparticle-based systems still have to make their effective translation to the clinics. This chapter focuses on the use of gold nanoparticles for molecular diagnostics and molecular therapeutics and their application in theranostics . Attention is paid to those systems that have moved toward the clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIE:

Aggregation-induced emission

AuNRs:

Gold nanorods

CT:

Computed tomography

DLS:

Dynamic light scattering

DOX:

Doxorubicin

EPR:

Enhanced permeability and retention effect

LFBs:

Lateral flow biosensor

LSPR:

Localized surface plasmon resonance

MTBC:

Mycobacterium tuberculosis complex

NASBA:

Nucleic acid sequence-based amplification

PA:

Photoacoustic imaging

PNB:

Plasmonic nanobubbles

QCM:

Quartz-crystal microbalance

SERS:

Surface-enhanced Raman scattering

siRNA:

Small interfering RNA

SNP:

Single nucleotide polymorphism

SPR:

Surface plasmon resonance

TPL:

Two-photon luminescence

US:

Ultrasounds

References

  • Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C. 2016;120:4691–716.

    Article  CAS  Google Scholar 

  • Agarwal A, Huang S W, O’Donnell M, Day K C, Day M, Kotov N Ashkenazi S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys. 2007;102: 64701-1-64701–4.

    Google Scholar 

  • Ahn S, Jung SY, Lee SJ. Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Mol. 2013;18:5858–90.

    Article  Google Scholar 

  • Ajnai G, Chiu A, Kan T, Cheng CC, Tsai TH, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med. 2014;6:172–8.

    Article  CAS  Google Scholar 

  • Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genet. 2015;8:1–12.

    Google Scholar 

  • Arifin DR, Long CM, Gilad AA, Alric C, Roux S, Tillement O, Link TW, Arepally A, Bulte JWM. Trimodal gadolinium-gold pancreatic islet cells restore normoglycemia in diabetic mice and can be tracked by using US, CT, and positive contrast MR imaging. Radiology. 2011;260:790–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baek S, Singh RK, Kim TH, Seo JW, Shin US, Chrzanowski W, Kim HW. Triple hit with drug carriers: PH- and temperature-responsive Theranostics for multimodal chemo- and photothermal therapy and diagnostic applications. ACS Appl Mater Interfaces. 2016;8:8967–79.

    Article  CAS  PubMed  Google Scholar 

  • Baptista P, Doria G, Henriques D, Pereira E, Franco R. Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol. 2005;119:111–7.

    Article  CAS  PubMed  Google Scholar 

  • Baptista PV, Koziol-Montewka M, Paluch-Oles J, Doria G, Franco R. Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem. 2006;52:1433–4.

    Article  CAS  PubMed  Google Scholar 

  • Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem. 2008;391:943–50.

    Article  CAS  PubMed  Google Scholar 

  • Baptista PV, Doria G, Quaresma P, Cavadas M, Neves CS, Gomes I, Eaton P, Pereira E, Franco R. Nanoparticles in molecular diagnostics. In: Progress in molecular biology and translational science. 2011. p. 427–88.

    Google Scholar 

  • Benedek TG. The history of gold therapy for tuberculosis. J Hist Med Allied Sci. 2004;59:50–89.

    Article  PubMed  Google Scholar 

  • Bosetti R, Ferrandina G, Marneffe W, Scambia G, Vereeck L. Cost–effectiveness of gemcitabine versus PEGylated liposomal doxorubicin for recurrent or progressive ovarian cancer: comparing chemotherapy with nanotherapy. Nanomedicine. 2014;9:2175–86.

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon K-H. Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Investig Radiol. 2007;42:797–806.

    Article  CAS  Google Scholar 

  • Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlos FF, Silva Nunes J, Flores O, Brito M, Doria G, Veiga L, Baptista P. Association of FTO and PPARG polymorphisms with obesity in Portuguese women. Diabetes Metab Syndr Obes: Targets Ther. 2013;6:241–5.

    CAS  Google Scholar 

  • Carlos FF, Flores O, Doria G, Baptista PV. Characterization of genomic single nucleotide polymorphism via colorimetric detection using a single gold nanoprobe. Anal Biochem. 2014;465:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Wu VCH, Chuang YC, Lin CS. Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J Microbiol Methods. 2008;73:7–17.

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Lin KI, Tang CY, Peng SL, Chuang YC, Lin YR, Wang JP, Lin CS. Optical detection of human papillomavirus type 16 and type 18 by sequence sandwich hybridization with oligonucleotide-functionalized au nanoparticles. IEEE Trans Nanobioscience. 2009;8:120–31.

    Article  PubMed  Google Scholar 

  • Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116:2826–85.

    Article  CAS  PubMed  Google Scholar 

  • Chien CC, Chen HH, Lai SF, Wu KC, Cai X, Hwu Y, Petibois C, Chu Y, Margaritondo G. Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature. J Nanobiotechnol. 2012;10:1–12.

    Article  CAS  Google Scholar 

  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine. 2015;10:321–41.

    Article  CAS  PubMed  Google Scholar 

  • Conde J, Tian F, Hernández Y, Bao C, Cui D, Janssen KP, Ibarra MR, Baptista PV, Stoeger T, de la Fuente JM. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials. 2013;34:7744–53.

    Article  CAS  PubMed  Google Scholar 

  • Conde J, Oliva N, Artzi N. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proc Natl Acad Sci U S A. 2015;112:1–10.

    Article  CAS  Google Scholar 

  • Conde J, Oliva N, Zhang Y, Artzi N. Local triple-combination therapy results in tumor regression and prevents recurrence in a colon cancer model. Nat Mater. 2016;15:1128–38.

    Article  CAS  PubMed  Google Scholar 

  • Cui D, Huang P, Zhang C, Ozkan CS, Pan B, Xu P. Dendrimer-modified gold nanorods as efficient controlled gene delivery system under near-infrared light irradiation. J Control Release. 2011;152:e137–9.

    Article  CAS  PubMed  Google Scholar 

  • Debnath M, Prasad G, Bisen P. Molecular diagnostic: promises and possibilities., Chap. 17. London: Springer; 2010.

    Book  Google Scholar 

  • Delaney KP, Branson BM, Uniyal A, Phillips S, Candal D, Owen SM, Kerndt PR. Evaluation of the performance characteristics of 6 rapid HIV antibody tests. Clin Infect Dis. 2011;52:257–63.

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Zhong Y, Du M, Liu Q, Fan Z, Dai F, Zhang X. Theranostic self-assembly structure of gold nanoparticles for NIR photothermal therapy and X-ray computed tomography imaging. Theranostics. 2014;4:904–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM. Gold nanoparticles for nucleic acid delivery. J Am Soc Gene Cell Therapy. 2014;22:1075–83.

    Article  CAS  Google Scholar 

  • Dinish US, Balasundaram G, Chang YT, Olivo M. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep. 2014;4:1–7.

    Google Scholar 

  • Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12:1657–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driskell JD, Jones CA, Tompkins SM, Tripp RA. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analyst. 2011;136:3083–90.

    Article  CAS  PubMed  Google Scholar 

  • Edwards PP, Thomas JM. Gold in a metallic divided state—from faraday to present-day nanoscience. Angew Chem Int Ed. 2007;46:5480–6.

    Article  CAS  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239:129–35.

    Article  CAS  PubMed  Google Scholar 

  • Faraday M. Experimental relations of gold and other metals to light. Philos Trans R Soc Lond. 1847;147:145–81.

    Article  Google Scholar 

  • Fayazfar H, Afshar A, Dolati M, Dolati A. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode. Anal Chim Acta. 2014;836:34–44.

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Yang T, Zhang W, Jiang C, Jiao K. Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: gold nanoparticle/polyaniline nanotube membranes. Anal Chim Acta. 2008;616:144–51.

    Article  CAS  PubMed  Google Scholar 

  • Feynman RP. There’s plenty of room at the bottom. Eng Sci. 1960;23:22–36.

    Google Scholar 

  • Franco R, Pedrosa P, Carlos F, Veigas B. Gold nanoparticles for DNA/RNA-based diagnostics. Handbook of nanoparticles. 2015. p. 1–25.

    Google Scholar 

  • Gill P, Ghalami M, Ghaemi A, Mosavari N, Abdul-Tehrani H, Sadeghizadeh M. Nanodiagnostic method for colorimetric detection of mycobacterium tuberculosis 16S rRNA. NanoBiotechnology. 2008;4:28–35.

    Article  CAS  Google Scholar 

  • Gils C, Ramanathan R, Breindahl T, Brokner M, Christiansen AL, Eng Ø, Hammer IJ, Herrera CB, Jansen A, Langsjøen EC, Løkkebo ES, Osestad T, Schrøder AD, Walther L. NT-proBNP on Cobas h 232 in point-of-care testing: performance in the primary health care versus in the hospital laboratory. Scand J Clin Lab Invest. 2015;75:602–9.

    Article  CAS  PubMed  Google Scholar 

  • Gradmann C. Robert Koch and the pressures of scientific research: tuberculosis and tuberculin. Med Hist. 2001;45:1–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guirgis BSS, Sá E, Cunha C, Gomes I, Cavadas M, Silva I, Doria G, Blatch GL, Baptista PV, Pereira E, Azzazy HME, Mota MM, Prudêncio M, Franco R. Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal Bioanal Chem. 2012;402:1019–27.

    Article  CAS  PubMed  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79:248–53.

    Article  CAS  PubMed  Google Scholar 

  • Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumor regions. Br J Radiol. 2011;84:526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Cheng ZH, Yuan FL, Jian PX, Rong GY, Pei FZ, Wang J. One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal Chem. 2008;80:8424–30.

    Article  CAS  PubMed  Google Scholar 

  • Heath JR. Nanotechnologies for biomedical science and translational medicine. Proc Natl Acad Sci. 2015;112:14436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hembury M, Chiappini C, Bertazzo S, Kalber TL, Drisko GL, Ogunlade O, Walker-Samuel S, Krishna KS, Jumeaux C, Beard P, Kumar CSSR, Porter AE, Lythgoe MF, Boissière C, Sanchez C, Stevens MM. Gold–silica quantum rattles for multimodal imaging and therapy. Proc Natl Acad Sci. 2015;112:1959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo DN, Yang DH, Moon HJ, Lee JB, Bae MS, Lee SC, Lee WJ, Sun IC, Kwon IK. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials. 2012;33:856–66.

    Article  CAS  PubMed  Google Scholar 

  • Higby GJ. Gold in medicine – a review of its use in the west before 1900. Gold Bull. 1982;15:130–40.

    Article  CAS  PubMed  Google Scholar 

  • Hofker MH, Fu J, Wijmenga C. The genome revolution and its role in understanding complex diseases. Biochim Biophys Acta (BBA) – Mol Basis Dis. 2014;1842:1889–95.

    Article  CAS  Google Scholar 

  • Hussain MM, Samir TM, Azzazy HME. Unmodified gold nanoparticles for direct and rapid detection of mycobacterium tuberculosis complex. Clin Biochem. 2013;46:633–7.

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed M. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85:101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeremic B, Aguerri AR, Filipovic N. Radiosensitization by gold nanoparticles. Clin Transl Oncol. 2013;15:593–601.

    Article  CAS  PubMed  Google Scholar 

  • Jung YL, Jung C, Parab H, Li T, Park HG. Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Biosens Bioelectron. 2010;25:1941–6.

    Article  CAS  PubMed  Google Scholar 

  • Kah JCY, Kho KW, Lee CGL, James C, Sheppard R, Shen ZX, Soo KC, Olivo MC. Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine. 2007;2:785–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalidasan K, Neo JL, Uttamchandani M. Direct visual detection of salmonella genomic DNA using gold nanoparticles. Mol BioSyst. 2013;9:618–21.

    Article  CAS  PubMed  Google Scholar 

  • Karakus C. Development of a lateral flow immunoassay strip for rapid detection of CagA antigen of helicobacter pylori. J Immunoass Immunochem. 2015;36:324–33.

    Article  CAS  Google Scholar 

  • Kim J, Kim J, Jeong C, Kim WJ. Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev. 2016;98:99–112.

    Article  CAS  PubMed  Google Scholar 

  • Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U. Off to the organelles – killing cancer cells with targeted gold nanoparticles. Theranostics. 2015;5:357–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, Wei T, Cao W, Zou G, Liang XJ. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials. 2012;33:1180–9.

    Article  CAS  PubMed  Google Scholar 

  • Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics - from genomics to proteomics. J Proteomics 2012;75:2811–23.

    Google Scholar 

  • Larguinho M, Figueiredo S, Cordeiro A, Carlos FF, Cordeiro M, Pedrosa P Baptista PV. Frontiers in nanomedicine, Chap. Nanoparticles for diagnostics and imaging Bentham. 2015.

    Google Scholar 

  • Lefferts JA, Jannetto P, Tsongalis GJ. Evaluation of the nanosphere verigene system and the verigene F5/F2/MTHFR nucleic acid tests. Exp Mol Pathol. 2009;87:105–8.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10:299–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Rothberg L. Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal Chem. 2005;77:6229–33.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Deng T, Chu X, Yang R, Jiang J, Shen G, Yu R. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem. 2010;82:2811–6.

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express. 2011;19:13565–77.

    Article  CAS  PubMed  Google Scholar 

  • Liu BH, Tsao ZJ, Wang JJ, Yu FY. Development of a monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip. Anal Chem. 2008;80:7029–35.

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Yeung CY, Chen PH, Yeh MK, Hou SY. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay. Food Chem. 2013;141:2526–32.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK, Fales AM, Choi J, Whitley MJ, Zhao X, Qi Y, Ma Y, Vaidyanathan G, Zalutsky MR, Kirsch DG, Badea CT, Vo-Dinh T. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5:946–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukianova-Hleb EY, Hu Y, Latterini L, Tarpani L, Lee S, Drezek RA, Hafner JH, Lapotko DO. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano. 2010a;4:2109–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukianova-Hleb EY, Hanna EY, Hafner JH, Lapotko DO. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnol. 2010b;21:1–19.

    Google Scholar 

  • Lukianova-Hleb EY, Oginsky AO, Samaniego AP, Shenefelt DL, Wagner DS, Hafner JH, Farach-Carson MC, Lapotko DO. Tunable plasmonic nanoprobes for theranostics of prostate cancer. Theranostics. 2011;1:3–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukianova-Hleb EY, Belyanin A, Kashinath S, Wu X, Lapotko DO. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials. 2012a;33:1821–6.

    Article  CAS  PubMed  Google Scholar 

  • Lukianova-Hleb EY, Ren X, Zasadzinski JA, Wu X, Lapotko DO. Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells. Adv Mater. 2012b;24:3831–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukianova-Hleb EY, Ren X, Sawant RR, Wu X, Torchilin VP, Lapotko DO. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat Med. 2014;20:778–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukianova-Hleb EY, Lapotko DO. Rapid Detection and Destruction of Squamous Cell Carcinoma of the Head and Neck by Nano-Quadrapeutics. Head Neck 2015;37:1547–55.

    Google Scholar 

  • Lukianova-Hleb EY, Kim Y-S, Belatsarkouski I, Gillenwater AM, O’Neill BE, Lapotko DO. Intraoperative diagnostics and elimination of residual microtumors with plasmonic nanobubbles. Nat Nanotechnol. 2016a:25–8.

    Google Scholar 

  • Lukianova-Hleb EY, Yvon ES, Shpall EJ, Lapotko DO. All-in-one processing of heterogeneous human cell grafts for gene and cell therapy. Mol Ther – Methods Clin Dev. 2016b;3:1–8.

    Google Scholar 

  • Mackenzie BYH, Cantab MD. Tuberculin treatment: general survey. Lancet. 1913;4695:521–4.

    Google Scholar 

  • Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81:1660–8.

    Article  CAS  PubMed  Google Scholar 

  • Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother. 2010;15:176–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm. 2013;10:831–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382:607–9.

    Article  CAS  PubMed  Google Scholar 

  • Ngo HT, Wang H-N, Fales AM, Vo-Dinh T. Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal Chem. 2013;85:6378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo HT, Wang HN, Fales AM, Vo-Dinh T. Plasmonic SERS biosensing nanochips for DNA detection. Anal Bioanal Chem. 2016;408:1773–81.

    Article  CAS  PubMed  Google Scholar 

  • Nunes Pauli GE, de la Escosura-Muñiz A, Parolo C, Helmuth Bechtold I, Merkoçi A. Lab-in-a-syringe using gold nanoparticles for rapid immunosensing of protein biomarkers. Lab Chip. 2015;15:399–405.

    Article  CAS  PubMed  Google Scholar 

  • Padmavathy B, Vinoth Kumar R, Jaffar Ali BM. A direct detection of Escherichia coli genomic DNA using gold nanoprobes. J Nanobiotechnol. 2012;10:1–10.

    Article  CAS  Google Scholar 

  • Park J, Park J, Ju EJ, Park SS, Choi J, Lee JH, Lee KJ, Shin SH, Ko EJ, Park I, Kim C, Hwang JJ, Lee JS, Song SY, Jeong SY, Choi EK. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging. J Control Release. 2015;207:77–85.

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa P, Vinhas R, Fernandes A, Baptista P. Gold nanotheranostics: proof-of-concept or clinical tool? Nanomaterials. 2015;5:1853–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pingarrón JM, Yáñez-Sedeño P, González-Cortés A. Gold nanoparticle-based electrochemical biosensors. Electrochim Acta. 2008;53:5848–66.

    Article  CAS  Google Scholar 

  • Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8:4593–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X, Peng X, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2007;26:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Quesada-González D, Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron. 2015;73:47–63.

    Article  PubMed  CAS  Google Scholar 

  • Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine. 2011;6:2859–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol. 2003;14:337–46.

    Article  CAS  PubMed  Google Scholar 

  • Rohrman BA, Leautaud V, Molyneux E, Richards-Kortum RR. A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One. 2012;7:1–8.

    Article  CAS  Google Scholar 

  • Russell C, Welch K, Jarvius J, Cai Y, Brucas R, Nikolajeff F, Al RET. Gold nanowire based electrical DNA detection using rolling circle amplification. ACS Nano. 2014;8:1147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Griffin RJ, Galanzha EI, Kim JW, Koonce N, Webber J, Mustafa T, Biris AS, Nedosekin DA, Zharov VP. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci Rep. 2013;3:1–9.

    Google Scholar 

  • Silva LB, Veigas B, Doria G, Costa P, Inácio J, Martins R, Fortunato E, Baptista PV. Portable optoelectronic biosensing platform for identification of mycobacteria from the mycobacterium tuberculosis complex. Biosens Bioelectron. 2011;26:2012–7.

    Article  CAS  PubMed  Google Scholar 

  • Soo PC, Horng YT, Chang KC, Wang JY, Hsueh PR, Chuang CY, Lu CC, Lai HC. A simple gold nanoparticle probes assay for identification of mycobacterium tuberculosis and mycobacterium tuberculosis complex from clinical specimens. Mol Cell Probes. 2009;23:240–6.

    Article  CAS  PubMed  Google Scholar 

  • Stewart M. Nanostructured plasmonic sensors. Chem Rev. 2008;108:494–521.

    Article  CAS  PubMed  Google Scholar 

  • Storhoff JJ, Lucas AD, Garimella V, Bao PY, Müller UR. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol. 2004;22:883–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M. Specific detection of mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem. 2011;417:73–9.

    Article  CAS  PubMed  Google Scholar 

  • Tong L, Wei H, Zhang S, Xu H. Recent advances in plasmonic sensors. Sensors. 2014;14:7959–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai TT, Shen SW, Cheng CM, Chen CF. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles. Sci Technol Adv Mater. 2013;14:1–7.

    Article  CAS  Google Scholar 

  • Tsongalis GJ, Silverman LM. Molecular diagnostics: a historical perspective. Clin Chim Acta. 2006;369:188–92.

    Article  CAS  PubMed  Google Scholar 

  • Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33:692–705.

    Article  CAS  PubMed  Google Scholar 

  • Veigas B, Machado D, Perdigão J, Portugal I, Couto I, Viveiros M, Baptista PV. Au-nanoprobes for detection of SNPs associated with antibiotic resistance in mycobacterium tuberculosis. Nanotechnology. 2010;21:1–7.

    Article  CAS  Google Scholar 

  • Veigas B, Jacob JM, Costa MN, Santos DS, Viveiros M, Inácio J, Martins R, Barquinha P, Fortunato E, Baptista PV. Gold on paper–paper platform for Au-nanoprobe TB detection. Lab Chip. 2012;12:4802–8.

    Article  CAS  PubMed  Google Scholar 

  • Vinhas R, Correia C, Ribeiro P, Lourenço A, Botelho de Sousa A, Fernandes AR, Baptista PV. Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes. Anal Bioanal Chem. 2016;408:5277–84.

    Article  CAS  PubMed  Google Scholar 

  • Viswambari Devi R, Doble M, Verma RS. Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron. 2015;68:688–98.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xie X, Wang X, Ku G, Gill KL, O’Neal DP, Stoica G, Wang LV. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 2004;4:1689–92.

    Article  CAS  Google Scholar 

  • Wang L, Wei Q, Wu C, Hu Z, Ji J, Wang P. The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chin Sci Bull. 2008;53:1175–84.

    CAS  Google Scholar 

  • Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, Shin HJC, Nie S, Shin DM. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res. 2011;71:1526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li Y, Wang J, Wang Q, Xu L, Du J, Yan S, Zhou Y, Fu Q, Wang Y, Zhan L. A broad-range method to detect genomic DNA of multiple pathogenic bacteria based on the aggregation strategy of gold nanorods. Analyst. 2012;137:4267–73.

    Article  CAS  PubMed  Google Scholar 

  • Webster RM. Combination therapies in oncology. Nat Rev Drug Discov. 2016;15:81–2.

    Article  CAS  PubMed  Google Scholar 

  • Weizmann Y, Patolsky F, Willner I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst. 2001;126:1502–4.

    Article  CAS  PubMed  Google Scholar 

  • Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev. 2008;37:2028–45.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Mao X, Zeng Q, Wang S, Kawde AN, Liu G. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem. 2009;81:669–75.

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:428–45.

    Article  CAS  PubMed  Google Scholar 

  • Yhee JY, Lee S, Kim K. Advances in targeting strategies for nanoparticles in cancer imaging and therapy. Nanoscale. 2014;6:13383–90.

    Article  CAS  PubMed  Google Scholar 

  • Yin F, Yang C, Wang Q, Zeng S, Hu R, Lin G, Tian J, Hu S, Lan RF, Yoon HS, Lu F, Wang K, Yong KT. A light-driven therapy of pancreatic adenocarcinoma using gold nanorods-based nanocarriers for co-delivery of doxorubicin and siRNA. Theranostics. 2015;5:818–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2:3–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Li M, Jurevic R, Cushing SK, Liu Y, Wu N. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva. Nanoscale. 2015;7:11005–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Gao X, Liu D, Chen X. Gold nanoparticles for in vitro diagnostics. Chem Rev. 2015;115:10575–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação para a Ciência e Tecnologia (FCT/MEC) for funding, UCIBIO (UID/Multi/04378/2013), co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728), WaterJPI/0003/2013, and PD/BD/105734/2014 for PP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro V. Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matias, A.S., Carlos, F.F., Pedrosa, P., Fernandes, A.R., Baptista, P.V. (2017). Gold Nanoparticles in Molecular Diagnostics and Molecular Therapeutics. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_16

Download citation

Publish with us

Policies and ethics