Skip to main content

Antimicrobial Activities of Metal Nanoparticles

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Metals have been used since ancient times to combat infectious diseases. With the introduction of nanotechnology, metal nanoparticles have gaining increased attention as antimicrobial agents due to their broad inhibitory spectrum against bacteria, fungi, and viruses. Although silver nanoparticles have been mostly investigated due to their recognized antimicrobial properties, while other metal nanoparticles have received increasing interest as antimicrobials. These include gold, zinc oxide, titanium oxide, copper oxide, and magnesium oxide nanoparticles, since their antibacterial effects have been described. Metal nanoparticles can exert their effect on microbial cells by generating membrane damage, oxidative stress, and injury to proteins and DNA. In addition, metal nanoparticles can be associated with other nanostructures and used as carriers to antimicrobial drugs, improving the array of potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abkhoo J, Panjehkeh N. Evaluation of antifungal activity of silver nanoparticles on Fusarium oxysporum. Int J Inf Secur. 2016; doi:10.17795/iji-41126.

  • Ahmad T, Wania IA, Lone IH, Ganguly A, Manzoorb N, Ahmad A, Ahmedc J, Al-Shihri AS. Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull. 2013;48:12–20.

    Article  CAS  Google Scholar 

  • Ahmad A, Wei Y, Syed F, Tahir K, Taj R, Khan AU, Hameed MU, Yuan Q. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb Pathog. 2016;99:271–81.

    Article  CAS  PubMed  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip. 2015;29:221–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzahrani E, Ahmed RA. Synthesis of copper nanoparticles with various sizes and shapes: application as a superior non-enzymatic sensor and antibacterial agent. Int J Electrochem Sci. 2016;11:4712–23.

    Article  CAS  Google Scholar 

  • Anantha A, Dharaneedharanb S, Heob MS, Mok YS. Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chem Eng J. 2015;262:179–88.

    Article  CAS  Google Scholar 

  • Ashajyothi C, Prabhurajeshwar C, Handral HK, Kelmani CR. Investigation of antifungal and anti-mycelium activities using biogenic nanoparticles: an eco-friendly approach. Environ Nanotechnol Monit Manag. 2016;5:81–7.

    Article  Google Scholar 

  • Baram-Pinto D, Shukla N, Gedanken A, Sarid R. Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small. 2010;6:1044–50.

    Article  CAS  PubMed  Google Scholar 

  • Baxi SN, Portnoy JM, Larenas-Linnemann D, Phipatanakul W. Exposure and health effects of fungi on humans. J Allerg Clin Immunol: In Pract. 2016;4:396–404.

    Article  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid-Based Complement Altern Med. 2015;2015:246012.

    Article  Google Scholar 

  • Bogutska КІ, Sklyarov YP, Prylutskyy YІ. Zinc and zinc nanoparticles: biological role and application in biomedicine. Ukr Bioorg Acta. 2013;1:9–16.

    Google Scholar 

  • Bonetta S, Motta F, Strini A, Carraro E. Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express. 2013;3:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandelli A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev Med Chem. 2012;12:731–41.

    Article  CAS  PubMed  Google Scholar 

  • Brandelli A, Lopes NA, Boelter JF. Food applications of nanostructured antimicrobials. In: Grumezescu AM, editor. Food preservation. London: Elsevier; 2017. p. 35–74.

    Google Scholar 

  • Cakić M, Glišić S, Nikolić G, Nikolić GM, Cakić K, Cvetinov M. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles. J Mol Struct. 2016;1110:156–61.

    Article  CAS  Google Scholar 

  • Carbone M, Donia DT, Sabbatella G, Silver RA. Nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci. 2016;28:273–9.

    Article  Google Scholar 

  • Chiriac V, Stratulat DN, Calin G, Nichitus S, Burlui V, Stadoleanu C, Popa M. Antimicrobial property of zinc based nanoparticles. IOP Conf Ser: Mater Sci Eng. 2016;133:012055.

    Article  Google Scholar 

  • Conte A, Longano D, Costa C, Ditaranto N, Ancona A, Cioffi N, Scrocco C, Sabbatini L, Contòd F, Del Nobile MA. A novel preservation technique applied to fiordilatte cheese. Innov Food Sci Emerg Technol. 2013;19:158–65.

    Article  CAS  Google Scholar 

  • Cubillo AE, Pecharromán C, Aguilar E, Santarén J, Moya JS. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci. 2006;41:5208–12.

    Article  CAS  Google Scholar 

  • Di DR, He ZZ, Sun ZQ, Liu J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine. 2012;8:1233–41.

    Article  CAS  PubMed  Google Scholar 

  • Dubey P, Brushan B, Sachdev A, Matai I, Kumar SU, Gopinath P. Silver-nanoparticle-incorporated composite nanofibers for potential wound-dressing applications. J Appl Polym Sci. 2015;132:42473.

    Article  CAS  Google Scholar 

  • Durairaj B, Muthu S, Xavier T. Antimicrobial activity of Aspergillus niger synthesized titanium dioxide nanoparticles. Adv Appl Sci Res. 2015;6:45–8.

    CAS  Google Scholar 

  • Dykmana L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–82.

    Article  Google Scholar 

  • El-Diasty EM, Ahmed MA, Okasha N, Mansour SF, El-Dek SI, El-Khalek HMA, Youssif MH. Antifungal activity of zinc oxide nanoparticles against dermatophytic lesions of cattle. Rom J Biophys. 2013;23:191–202.

    CAS  Google Scholar 

  • Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci. 2015;345:329–36.

    Article  CAS  Google Scholar 

  • Eskandari M, Haghighi N, Ahmadi V, Haghighi F, Mohammadi SR. Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass. Phys B Condens Matter. 2011;406:112–4.

    Article  CAS  Google Scholar 

  • Espitia PJP, Soares NFF, Coimbra JSR, de Andrade NJ, Cruz RS. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012;5:1447–64.

    Article  CAS  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS. The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology. 2009;20:85103.

    Article  CAS  Google Scholar 

  • Faraji AM, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17:2950–62.

    Article  CAS  PubMed  Google Scholar 

  • Faria AF, Martinez DST, Meira SMM, Moraes ACM, Brandelli A, Filho AGS, Alves OL. Anti-adhesion and antibacterial activity silver nanoparticles supported on graphene oxide sheets. Colloid Surf B: Biointerf. 2015;113:115–24.

    Article  CAS  Google Scholar 

  • Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58:1456–9.

    Article  CAS  PubMed  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–74.

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex vírus and human parainfluenza virus type 3. Int J Nanomedicine. 2013;8:4303–14.

    PubMed  PubMed Central  Google Scholar 

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16:8894–918.

    Article  CAS  PubMed  Google Scholar 

  • Gauthier GM, Keller NP. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genet Biol. 2013;61:146–57.

    Article  CAS  PubMed  Google Scholar 

  • Gawande MB, Goswami A, Felpin FX, Asefa T, Huang T, Silva R, Zou X, Zboril R, Varma RS. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev. 2016;116:3722–811.

    Article  CAS  PubMed  Google Scholar 

  • Gowri SR, Gandhi R, Sundrarajan M. Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. J Mater Sci Technol. 2014;30:782–90.

    Article  CAS  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progr Nat Sci: Mater Int. 2012;22:693–700.

    Article  Google Scholar 

  • Hameed ASH, Karthikeyan C, Kumar VS, Kumaresan S, Sasikumar S. Effect of Mg2+, Ca2+, Sr2+ and Ba2+ metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans. Mater Sci Eng C. 2015;52:171–7.

    Article  CAS  Google Scholar 

  • Hanus MJ, Harris AT. Nanotechnology innovations for the construction industry. Prog Mater Sci. 2013;58:1056–102.

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011;166:207–15.

    Article  CAS  PubMed  Google Scholar 

  • He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP Jr, Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol. 2016;14:1–9.

    Article  Google Scholar 

  • Hochmannova L, Vytrasova J. Photocatalytic and antimicrobial effects of interior paints. Progr Org Coat. 2010;67:1–5.

    Article  CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Román F. Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ. 2014;466(467):1047–59.

    Article  PubMed  CAS  Google Scholar 

  • Hossain KMZ, Patel U, Ahmed I. Development of microspheres for biomedical applications: a review. Prog Biomater. 2015;4:1.

    Article  CAS  Google Scholar 

  • Hsu LY, Wijaya L, Ng EST, Gotuzzo E. Tropical fungal infections. Infect Dis Clin N Am. 2012;26:497–512.

    Article  Google Scholar 

  • Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Geilich BM, Webster TJ. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int J Nanomedicine. 2014;9:3801–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ifuku S, Tsukiyama Y, Yukawa T, Egusa M, Kaminaka H, Izawa H, Morimotoc M, Saimoto H. Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydr Polym. 2015;117:813–7.

    Article  CAS  PubMed  Google Scholar 

  • Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol. 2014;98:1001–9.

    Article  CAS  PubMed  Google Scholar 

  • Jin T, He YP. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res. 2011;13:6877–85.

    Article  CAS  Google Scholar 

  • Jin T, Sun D, Su Y, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7. J Food Sci. 2009;74:46–52.

    Article  CAS  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett. 2014;115:13–7.

    Article  CAS  Google Scholar 

  • Käosaar S, Kahru A, Mantecca P, Kasemets K. Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis. Toxicol In Vitro. 2016;35:149–62.

    Article  PubMed  CAS  Google Scholar 

  • Katwal R, Kaur H, Sharma G, Naushad M, Pathania D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem. 2015;31:173–84.

    Article  CAS  Google Scholar 

  • Khandelwal N, Kaur G, Kumar N, Tiwari A. Application of silver nanoparticles in viral inhibition: a new hope for antivirals. Dig J Nanomater Biostruct. 2014;9:175–96.

    Google Scholar 

  • Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31:240–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22:235–42.

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 2012;40:53–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knetsch ML, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers. 2011;3:340–66.

    Article  CAS  Google Scholar 

  • Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res. 2012;14:1063.

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A. 2012;93:95–9.

    Article  CAS  Google Scholar 

  • Kumar N, Palmer GR, Shah V, Walker VK. The effect of silver nano-particles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS One. 2014;9:e99953. doi:10.1371/journal.pone.0099953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology. 2011;39:194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara HH, Ayala-Nuñez N, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8:1.

    Article  CAS  Google Scholar 

  • Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kamala-Kannan S, Oh BT. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett. 2013;105:128–31.

    Article  CAS  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84.

    Article  CAS  PubMed  Google Scholar 

  • León-Silva S, Fernández-Luqueño F, López-Valdez F. Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water Air Soil Pollut. 2016;227:306.

    Article  CAS  Google Scholar 

  • Letfullin RR, Iversen CB, George TF. Modeling nanophotothermal therapy: kinetics of thermal ablation of healthy and cancerous cell organelles and gold nanoparticles. Nanomed: Nanotechnol Biol Med. 2011;7:137–45.

    Article  CAS  Google Scholar 

  • Leung YH, Ng AM, Xu X, Shen Z, Gethings LA, Wong MT, Chan CM, Guo MY, Ng YH, Djurišić AB, Lee PK, Chan WK, Yu LH, Phillips DL, Ma AP, Leung FC. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small. 2014;10:1171–83.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang X, Chen F, Zhang C, Zhi X, Wang K, Cui D. The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials. 2013;34:3882–90.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8:10682–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima E, Guerra R, Lara V, Guzmán A. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J. 2013;7:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology. 2011;22:105101.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–57.

    Article  CAS  PubMed  Google Scholar 

  • Longano D, Ditaranto N, Cioffi N, Di Niso F, Sibillano T, Ancona A, Conte A, Del Nobile MA, Sabbatini L, Torsi L. Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem. 2012;403:1179–86.

    Article  CAS  PubMed  Google Scholar 

  • Luo ZS, Ye QY, Li D. Influence of nano-TiO2 modified LDPE film packaging on quality of strawberry. Mod Food Sci Technol. 2013;29:2340–4.

    CAS  Google Scholar 

  • Ma H, Williamsb PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles - a review. Environ Pollut. 2013;172:76–85.

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J Anal Sci Technol. 2014;5:40.

    Article  Google Scholar 

  • Mallikarjuna K, Sushma NJ, Reddy BVS, Narasimha G, Raju BDP. Palladium nanoparticles: single-step plant-mediated green chemical procedure using Piper betle leaves broth and their anti-fungal studies. Int J Chem Anal Sci. 2013;4:14–8.

    Article  CAS  Google Scholar 

  • Mamonova IA, Matasov MD, Babushkina V, Losev OE, Ye G, Chebotareva EV, Gladkova Y, Borodulina V. Study of physical properties and biological activity of copper nanoparticles. Nanotechnol Russia. 2013;8:303–8.

    Article  Google Scholar 

  • Mirhosseini M, Afzali M. Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control 2016;15:208–15.

    Google Scholar 

  • Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morace G, Perdoni F, Borghi E. Antifungal drug resistance in Candida species. J Glob Antimicrob Resist. 2014;2:254–9.

    Article  PubMed  Google Scholar 

  • Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res Lett. 2013;8:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy M, Ting K, Zhang X, Soo C, Zheng Z. Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J Nanomater. 2015;2015:696918.

    Article  CAS  Google Scholar 

  • Murugan K, Dinesh D, Paulpandi M, Althbyani AD, Subramaniam J, Madhiyazhagan P. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrical-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2015;114:4349–61.

    Article  PubMed  Google Scholar 

  • Narayanan KB, Park HH. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol. 2014;140:185–92.

    Article  CAS  Google Scholar 

  • Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008;8:302–6.

    Article  CAS  PubMed  Google Scholar 

  • Ogar A, Tylko G, Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci Total Environ. 2015;521(522):305–14.

    Article  PubMed  CAS  Google Scholar 

  • Othman SH, Salam NRA, Zainal N, Basha RK, Talib RA. Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int J Photoenergy. 2014;2014:945930.

    Article  CAS  Google Scholar 

  • Papp SC, Ludwig K, Roskamp M, Bottcher C, Schlecht S, Herrmann A, Haag R. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 2010;6:2900–6.

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Park HH, Kim SY, Kim SJ, Woo K, Ko GP. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl Environ Microbiol. 2014;80:2343–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H, Chavda F, Badwaik V, Lawrenz MB, Dakshinamurthy R. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. 2016.

    Google Scholar 

  • Pinto RJB, Almeida A, Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Trindade T. Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloid Surf B: Biointerf. 2013;103:143–8.

    Article  CAS  Google Scholar 

  • Pócsi I. Toxic metal/metalloid tolerance in fungi - a biotechnology-oriented approach. In: Bánfalvi G, editor. Cellular Effects of Heavy Metals. Dordrecht: Springer Science+Business Media B.V.; 2011. p.31–58.

    Google Scholar 

  • Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32.

    Article  Google Scholar 

  • Pradhan N, Singh S, Ojha N. Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed Research International. 2015; Article ID 365672, doi:10.1155/2015/365672.

    Google Scholar 

  • Prasad V, Shaikh AJ, Kathe AA, Bisoyi DK, Verma AK, Vigneshwaran N. Functional behaviour of paper coated with zinc oxide-soluble starch nanocomposites. J Mater Process Technol. 2010;210:1962–7.

    Article  CAS  Google Scholar 

  • Pusty M, Rana AK, Kumar Y, Sathe V, Sen S, Shirage P. Synthesis of partially reduced graphene oxide/silver nanocomposite and its inhibitive action on pathogenic fungi grown under ambient conditions. Chem Select. 2016;1:4235–45.

    CAS  Google Scholar 

  • Quirós J, Gonzalo S, Jalvo B, Boltes K, Perdigón-Melón JA, Rosa R. Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes. Sci Total Environ. 2016;563(564):912–20.

    Google Scholar 

  • Raffi M, Mehrwan S, Bhatti MT, Javed IA, Abdul H, Wasim Y, Hasan. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol. 2010;60:75–80.

    Google Scholar 

  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle AP, Gupta I, Brandelli A. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int J Pharm. 2015;496:159–72.

    Article  CAS  PubMed  Google Scholar 

  • Rajawat S, Qureshi MS. Comparative study on bactericidal effect of silver nanoparticles, synthesized using green technology, in combination with antibiotics on Salmonella typhi. J Biomater Nanobiotechnol. 2012;3:480–5.

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Vanaja M, Annadurai G. Anticancer and enhanced antimicrobial activity of biosynthesized silver nanoparticles against clinical pathogens. J Mol Struct. 2016;1116:165–73.

    Article  CAS  Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett. 2012;71:114–6.

    Article  CAS  Google Scholar 

  • Rao NH, Lakshmidevi N, Pammi SVN, Kollu P, Ganapaty S, Lakshmi P. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater Sci Eng C. 2016;62:553–7.

    Article  CAS  Google Scholar 

  • Rathnayakea WGIU, Ismail H, Baharin A, Darsanasiri AGND, Rajapakse S. Synthesis and characterization of nano silver based natural rubber latex foam for imparting antibacterial and anti-fungal properties. Polym Test. 2012;31:586–92.

    Article  CAS  Google Scholar 

  • Ravichandran V, Vasanthi S, Shalini S, Shah SAA, Harish R. Green synthesis of silver nanoparticles using Artocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Mater Lett. 2016;180:264–7.

    Article  CAS  Google Scholar 

  • Ravishankar RV, Jamuna BA. Nanoparticles and their potential application as antimicrobials. In: Méndez V, editor. Science against microbial pathogens, communicating current research and technological advances. Badajoz: Formatex; 2011. p. 197–209.

    Google Scholar 

  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61:869–76.

    Article  CAS  PubMed  Google Scholar 

  • Roshmi T, Soumya KR, Jyothis M, Radhakrishnan EK. Effect of biofabricated gold nanoparticle-based antibiotic conjugates on minimum inhibitory concentration of bacterial isolates of clinical origin. Gold Bull. 2015;48:63–71.

    Article  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4:707–16.

    Article  CAS  PubMed  Google Scholar 

  • Salunke GR, Ghosh S, Santosh Kumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine. 2014;9:2635–53.

    PubMed  PubMed Central  Google Scholar 

  • Sequeira S, Cabrita EJ, Macedo MF. Antifungals on paper conservation: an overview. Int Biodeterior Biodegrad. 2012;74:67–86.

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis, and their antimicrobial activities. Adv Colloid Interf Sci. 2009;145:83–96.

    Article  CAS  Google Scholar 

  • Speshock J, Hussain S. Novel nanotechnology-based antiviral agents: silver nanoparticle neutralization of hemorrhagic fever viruses. Air Force Research Laboratory, Unclassified Document 88AWB-2009-4491. 2009.

    Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18:6679–86.

    Article  CAS  Google Scholar 

  • Suresh S, Karthikeyan S, Saravanan P, Jayamoorthy K, Dhanalekshmi KI. Comparison of antibacterial and antifungal activity of 5-amino-2-mercapto benzimidazole and functionalized Ag3O4 nanoparticles. Karbala Int J Mod Sci. 2016a;2:129–37.

    Article  Google Scholar 

  • Suresh S, Karthikeyan S, Saravanan P, Jayamoorthy K. Comparison of antibacterial and antifungal activities of 5-amino-2 mercaptobenzimidazole and functionalized NiO nanoparticles. Karbala Int J Mod Sci. 2016b;2:188–95.

    Article  Google Scholar 

  • Tamayo LA, Zapata PA, Vejar ND, Azocar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Paez MA. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C. 2014;40:24–31.

    Article  CAS  Google Scholar 

  • Tan G, Sağlam S, Emül E, Erdönmez D, Sağlam N. Synthesis and characterization of silver nanoparticles integrated in polyvinyl alcohol nanofibers for bionanotechnological applications. Turk J Biol. 2016;40:643–51.

    Article  CAS  Google Scholar 

  • Tang ZX, Lv BF. MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng. 2014;31:591–601.

    Google Scholar 

  • Theivasanthi T, Alagar M. Studies of copper nanoparticles effects on micro-organisms. Int J Phys Sci. 2011;6:3662–71.

    Google Scholar 

  • Thirumurugan A, Ramachandran S, Gowri AS. Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria - an approach for food packaging material preparation. Int Food Res J. 2013;20:1909–12.

    Google Scholar 

  • Toker RD, Kayaman-Apohan N, Kahraman MV. UVcurable nano-silver containing polyurethane based organic–inorganic hybrid coatings. Progr Org Coat. 2013;76:1243–50.

    Article  CAS  Google Scholar 

  • Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4:033001.

    Article  CAS  Google Scholar 

  • Umer A, Naveed S, Ramzan N, Rafique MS, Imran M. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Rev Matér. 2014;19:197–203.

    Google Scholar 

  • Velmurugan P, Sivakumar S, Young-Chae S, Seong-Ho J, Pyoung-In Y, Jeong-Min S, Sung-Chul H. Synthesis and characterization comparison of peanut shell extract silver nanoparticles with commercial silver nanoparticles and their antifungal activity. J Ind Eng Chem. 2015;31:51–4.

    Article  CAS  Google Scholar 

  • Velmurugan P, Shim J, Kim K, Oh BT. Prunus x yedoensis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Mater Lett. 2016;174:61–5.

    Article  CAS  Google Scholar 

  • Wang C, Huang X, Deng W, Chang C, Hang R, Tang B. A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications. Mater Sci Eng C. 2014;41:134–41.

    Article  CAS  Google Scholar 

  • Wani IA, Ahmad T. Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloid Surf B: Biointerf. 2013;101:162–70.

    Article  CAS  Google Scholar 

  • Warnes SL, Caves V, Keevil CW. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbiol. 2012;14:1730–43.

    Article  CAS  PubMed  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia ZK, Ma QH, Li SY, Zhang DQ, Cong L, Tian YL, Yang RY. The antifungal effect of silver nanoparticles on Trichosporon asahii. J Microbiol Immunol Infect. 2016;49:182–8.

    Article  CAS  PubMed  Google Scholar 

  • Yallappa S, Manjanna J, Dhananjaya BL, Vishwanatha U, Ravishankar B, Gururaj H, Niranjana P, Hungund BS. Phytochemically functionalized cu and ag nanoparticles embedded in MWCNTs for enhanced antimicrobial and anticancer properties. Nano-Micro Lett. 2016;8:120–30.

    Article  CAS  Google Scholar 

  • Yao N, Yeung L. Investigation of the performance of TiO2 photocatalytic coatings. Chem Eng J. 2011;167:13–21.

    Article  CAS  Google Scholar 

  • Yin ZF, Wu L, Yang HG, Su YH. Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys. 2013;15:4844–58.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, Namura S, Akamaysu H, Horio T. Antimicrobial effects of phototherapy and photochemotherapy in vivo and in vitro. Br J Dermatol. 1995;135:528–32.

    Article  Google Scholar 

  • Youssef AM, Abdel-Aziz MS. Preparation of polystyrene nanocomposites based on silver nanoparticles using marine bacterium for packaging. J Polym Plast Technol Eng. 2013;52:607–13.

    Article  CAS  Google Scholar 

  • Yu KP, Huang YT, Yang SC. The antifungal efficacy of nano-metals supported TiO2 and ozone on the resistant Aspergillus niger spore. J Hazard Mater. 2013;261:155–62.

    Article  CAS  PubMed  Google Scholar 

  • Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X. Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys. 2015;72:771–5.

    Article  CAS  PubMed  Google Scholar 

  • Zhang LL, Jiang YH, Ding YL, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (zno nanofluids). J Nanopart Res. 2007;9:479–89.

    Article  CAS  Google Scholar 

  • Zhang Y, Nayak TR, HongH CW. Biomedical applications of zinc oxide nanomaterials. Curr Mol Med. 2013;13:1633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brandelli, A., Ritter, A.C., Veras, F.F. (2017). Antimicrobial Activities of Metal Nanoparticles. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_15

Download citation

Publish with us

Policies and ethics