Skip to main content

Colloidal Bio-nanoparticles in Polymer Fibers: Current Trends and Future Prospects

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Biotechnology and bio-nanotechnology are emerging fields that inspire vast scientific and engineering inquiry. Bio-nanotechnology is relatively new and dynamic, applying biological principles to produce new systems and materials at nanoscale level. Eco-friendly nanomaterial development and production by biosynthesis have an interesting niche, where metallic and functionally diverse biosynthesized nanoparticles (bio-NPs) are prepared by exploiting both biological processes in microorganisms and biochemical reactions in plant extracts and other biomass. The major advantage of this approach is one-step chemical reduction and stabilization, with the two principal components providing toxic-free intermediates in the bio-NP genesis. This heralds exciting possibilities for inexpensive NP production and consequent rapid and wide adoption of novel applications, such as incorporation of bio-NPs to augment polymer nanofiber properties.

This chapter presents an overview of critical aspects of the composite materials’ design and development. The recognized mechanics of bio-NP formation is followed by idiosyncrasies in choice of the core material and the “host” environment where synthesis occurs and the physical and chemical characterization of resultant bio-NPs. Application potential is then outlined, and highly biocompatible polymers are highlighted in a major review of nanofiber production. Finally, future prospects in bio-NP and nanofiber composition are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag:

Silver

Au:

Gold

CM:

Carboxy-methyl

CuO:

Copper oxide

DLS:

Dynamic light scattering

Fe2O3 :

Iron (III) oxide

FTIR:

Fourier transform infrared spectroscopy

MEMS:

Microelectromechanical systems

NP:

Nanoparticle

PCL:

Poly(ε-caprolacton)

Pd:

Palladium

PGA:

Poly(glycolic acid)

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-lactic acid)

Pt:

Platinum

PVA:

Poly(vinyl alcohol)

PVP:

Polyvinylpyrrolidone

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

ZnO:

Zinc oxide

ZrO2 :

Zirconia oxide

References

  • Baset S, Akbari H, Zeynali H, Shafie M. Size measurement of metal and semiconductor nanoparticles vis UV/VIS absorption spectra. Dig J Nanomater Biostruct. 2011;6(2):709–16.

    Google Scholar 

  • Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337–51.

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces. 2011;83(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  • Choi WK, Liew TH, Chew HG, Zheng F, Thompson CV, Wang Y, Hong MH, Wang XD, Li L, Yun J. A combined top-down and bottom-up approach for precise placement of metal nanoparticles on silicon. Small. 2008;4(3):330–3.

    Article  CAS  PubMed  Google Scholar 

  • Chronakis IS. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J Mater Process Technol. 2005;167(2–3):283–93.

    Article  CAS  Google Scholar 

  • Deniz AE, Vural HA, Ortaç B, Uyar T. Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater Lett. 2011;65(19–20):2941–3.

    Article  CAS  Google Scholar 

  • Díez-Pascual AM, Naffakh M, Marco C, Ellis G. Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos A: Appl Sci Manuf. 2012;43(4):603–12.

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Duran M, Yadav A, Gade A, Rai M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol. 2011;90(5):1609–24.

    Article  CAS  PubMed  Google Scholar 

  • Engstrom DS, Porter B, Pacios M, Bhaskaran H. Additive nanomanufacturing – a review. J Mater Res. 2014;29(17):1792–816.

    Article  CAS  Google Scholar 

  • Erben J, Pilarova K, Sanetrnik F, Chvojka J, Jencova V, Blazkova L, Havlicek J, Novak O, Mikes P, Prosecka E, Lukas D, Kuzelova Kostakova E. The combination of meltblown and electrospinning for bone tissue engineering. Mater Lett. 2015;143(0):172–6.

    Article  CAS  Google Scholar 

  • Fathona IW, Yabuki A. Short electrospun composite nanofibers: effects of nanoparticle concentration and surface charge on fiber length. Curr Appl Phys. 2014;14(5):761–7.

    Article  Google Scholar 

  • Fernandez JG, Ingber DE. Unexpected strength and toughness in chitosan-fibroin laminates inspired by insect cuticle. Adv Mater. 2012;24(4):480–4.

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces. 2009;74(1):328–35.

    Article  CAS  PubMed  Google Scholar 

  • Hadipour-Goudarzi E, Montazer M, Latifi M, Aghaji AAG. Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver. Carbohydr Polym. 2014;113(0):231–9.

    Article  CAS  PubMed  Google Scholar 

  • Hansen LM, Smith DJ, Reneker DH, Kataphinan W. Water absorption and mechanical properties of electrospun structured hydrogels. J Appl Polym Sci. 2005;95(2):427–34.

    Article  CAS  Google Scholar 

  • He D, Hu B, Yao QF, Wang K, Yu SH. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano. 2009;3(12):3993–4002.

    Article  CAS  PubMed  Google Scholar 

  • Holišová V, Urban M, Kolenčík M, Němcová Y, Schröfel A, Peikertová P, Slabotinský J, Kratošová G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab J Chem. 2017. in press, doi.org/10.1016/j.arabjc.2017.08.003.

  • Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C. 2009;29(4):1216–9.

    Article  CAS  Google Scholar 

  • Hu X, Chen X, Zhang L, Lin X, Zhang Y, Tang X, Wang Y. A combined bottom-up/top-down approach to prepare a sterile injectable nanosuspension. Int J Pharm. 2014;472(1–2):130–9.

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Duan Y-Y, Wang S-H, Zhang S-F, Wang Z-Y. Preparation and characterization of antibacterial silver-containing nanofibers for wound dressing applications. J US-China Med Sci. 2007;4(2):52–4.

    Google Scholar 

  • Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J. Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method, Google Patents 2009;US 7,585,437 B2.

    Google Scholar 

  • Junlabhut P, Mekprasart W, Noonuruk R, Chongsri K, Pecharapa W. Characterization of ZnO:Sn Nanopowders synthesized by co-precipitation method. Energy Procedia. 2014;56(0):560–5.

    Article  CAS  Google Scholar 

  • Krahne R, Morello G, Figuerola A, George C, Deka S, Manna L. Physical properties of elongated inorganic nanoparticles. Phys Rep. 2011;501(3–5):75–221.

    Article  CAS  Google Scholar 

  • Konvičková Z, Schröfel A, Kolenčík M, Dědková K, Peikertová P, Žídek M, Seidlerová J, Kratošová G. Antimicrobial bionanocomposite–from precursors to the functional material in one simple step. J Nanopart Res. 2016;18(12).

    Google Scholar 

  • Konvičková Z, Schröfel A, Kolenčík M, Dědková K, Peikertová P, Žídek M, Seidlerová J, Kratošová G. Erratum to: Antimicrobial bionanocomposite–from precursors to the functional material in one simple step (Journal of Nanoparticle Research, (2016), 18, 12, (368), 10.1007/s11051-016-3664-y). J Nanopart Res. 2017;19(7).

    Google Scholar 

  • Lu Y, Li Y, Zhang S, Xu G, Fu K, Lee H, Zhang X. Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur Polym J. 2013;49(12):3834–45.

    Article  CAS  Google Scholar 

  • Lukáš D, Sarkar A, Martinová L, Vodsed’álková K, Lubasová D, Chaloupek J, Pokorný P, Mikeš P, Chvojka J, Komárek M. Physical principles of electrospinning (electrospinning as a nano-scale technology of the twenty-first century). Text Prog. 2009;41(2):59–140.

    Article  Google Scholar 

  • McMurry J. Organic chemistry. Belmont: Thomson-Brooks/Cole; 2004.

    Google Scholar 

  • Mellado P, McIlwee HA, Badrossamay MR, Goss JA, Mahadevan L, Kit Parker K. A simple model for nanofiber formation by rotary jet-spinning. Appl Phys Lett. 2011;99(20): -.

    Google Scholar 

  • Mittal AK, Bhaumik J, Kumar S, Banerjee UC. Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci. 2014;415(0):39–47.

    Article  CAS  PubMed  Google Scholar 

  • More DS, Moloto MJ, Moloto N, Matabola KP. TOPO-capped silver selenide nanoparticles and their incorporation into polymer nanofibers using electrospinning technique. Mater Res Bull. 2015;65(0):14–22.

    Article  CAS  Google Scholar 

  • Morton WJ. Method of dispersing fluids, Google Patents. 1902;US 705,691.

    Google Scholar 

  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98.

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci. 2010;156(1–2):1–13.

    Article  CAS  Google Scholar 

  • Nguyen T-H, Lee K-H, Lee B-T. Fabrication of Ag nanoparticles dispersed in PVA nanowire mats by microwave irradiation and electro-spinning. Mater Sci Eng C. 2010;30(7):944–50.

    Article  CAS  Google Scholar 

  • Nguyen TH, Kim YH, Song HY, Lee BT. Nano Ag loaded PVA nano-fibrous mats for skin applications. J Biomed Mater Res B Appl Biomater. 2011;96(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  • Omri A, Benzina M, Bennour F. Industrial application of photocatalysts prepared by hydrothermal and sol–gel methods. J Ind Eng Chem. 2015;21(0):356–62.

    Article  CAS  Google Scholar 

  • Pencheva D, Bryaskova R, Kantardjiev T. Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater Sci Eng C. 2012;32(7):2048–51.

    Article  CAS  Google Scholar 

  • Pentimalli M, Bellusci M, Padella F. High-energy ball milling as a general tool for nanomaterials synthesis and processing. Handbook of mechanical nanostructuring, Wiley-VCH Verlag GmbH & Co. KGaA; 2015. pp. 663–679.

    Google Scholar 

  • Pinna A, Lasio B, Piccinini M, Marmiroli B, Amenitsch H, Falcaro P, Tokudome Y, Malfatti L, Innocenzi P. Combining top-down and bottom-up routes for fabrication of mesoporous Titania films containing ceria nanoparticles for free radical scavenging. ACS Appl Mater Interfaces. 2013;5(8):3168–75.

    Article  CAS  PubMed  Google Scholar 

  • Polte J. Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm. 2015;17(36):6809–30.

    Article  CAS  Google Scholar 

  • Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008;49(10):2387–425.

    Article  CAS  Google Scholar 

  • Ruska E. The early development of electron lenses and electron microscopy. Stuttgart: Hirzel; 1980.

    Google Scholar 

  • Salalha W, Dror Y, Khalfin RL, Cohen Y, Yarin AL, Zussman E. Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir. 2004;20(22):9852–5.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K. Electrospinning to Forcespinning™. Mater Today. 2010;13(11):12–4.

    Article  CAS  Google Scholar 

  • Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I. Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res. 2011;13(8):3207–16.

    Article  CAS  Google Scholar 

  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM. Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater. 2014;10(10):4023–42.

    Article  CAS  PubMed  Google Scholar 

  • Sebe I, Szabó B, Nagy ZK, Szabó D, Zsidai L, Kocsis B, Zelkó R. Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique. Int J Pharm. 2013;458(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  • Son Y, Yeo J, Ha CW, Lee J, Hong S, Nam KH, Yang D-Y, Ko SH. Application of the specific thermal properties of Ag nanoparticles to high-resolution metal patterning. Thermochim Acta. 2012;542:52–6.

    Article  CAS  Google Scholar 

  • Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B Biol. 2016;163:311–8.

    Article  CAS  Google Scholar 

  • Velmurugan P, Cho M, Lim S-S, Seo S-K, Myung H, Bang K-S, Sivakumar S, Cho K-M, Oh B-T. Phytosynthesis of silver nanoparticles by Prunus yedoensis leaf extract and their antimicrobial activity. Mater Lett. 2015;138:272–5.

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Mahadevan A, Sathishkumar M, Pavagadhi S, Balasubramanian R. Biosynthesis of Au(0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chem Eng J. 2011;167(1):5–5.

    Article  CAS  Google Scholar 

  • Virovska D, Paneva D, Manolova N, Rashkov I, Karashanova D. Electrospinning/electrospraying vs. electrospinning: a comparative study on the design of poly(l-lactide)/zinc oxide non-woven textile. Appl Surf Sci. 2014;311(0):842–50.

    Article  CAS  Google Scholar 

  • Wang Y, Yang Q, Shan G, Wang C, Du J, Wang S, Li Y, Chen X, Jing X, Wei Y. Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater Lett. 2005;59(24–25):3046–9.

    Article  CAS  Google Scholar 

  • Yadav TP, Yadav RM, Singh DP. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol. 2012;2(3):22–48.

    Article  CAS  Google Scholar 

  • Yallappa S, Manjanna J, Dhananjaya BL. Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137(0):236–43.

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y. Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate-oxidizing acetic acid bacteria with the Q-10 system. J Gen Appl Microbiol. 1983;29(5):417–20.

    Article  Google Scholar 

  • Yang N, WeiHong L, Hao L. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett. 2014;134:67–70.

    Article  CAS  Google Scholar 

  • Yuan C-G, Huo C, Yu S, Gui B. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity. Physica E. 2017;85:19–26.

    Article  CAS  Google Scholar 

  • Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev. 1914;3(2):69–91.

    Article  Google Scholar 

  • Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules. 2005;6(5):2583–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D. Biosynthesis and structural characteristics of selenium nanoparticles by pseudomonas alcaliphila. Colloids Surf B Biointerfaces. 2011;88(1):196–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Ministry of Education of the Czech Republic project No. SP2016/57, SP2017/70.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Konvičková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konvičková, Z., Laššák, O., Kratošová, G., Škrlová, K., Holišová, V. (2017). Colloidal Bio-nanoparticles in Polymer Fibers: Current Trends and Future Prospects. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_13

Download citation

Publish with us

Policies and ethics