Skip to main content

Iron Oxide Magnetic Nanoparticles in Photodynamic Therapy: A Promising Approach Against Tumor Cells

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Iron oxide magnetic nanoparticles have been extensively employed in biomedical applications due to their biocompatibility, small size, ability to surface functionalization, superparamagnetism behavior, and targeting properties. Upon the application of external magnetic field , iron oxide nanoparticles can be guided to the target site of application, minimizing possible side effects to nontarget tissues. Recently, several papers describe the combination of iron oxide magnetic nanoparticles with photosensitizer (PS) molecules for photodynamic therapy (PDT). PDT is a clinical treatment based on the administration of a photosensitizer to the tumor site, which under the irradiation with visible-near-infrared light generates reactive oxygen species (ROS ) able to cause deleterious effects to the treated tumor site. The main disadvantage of PDT is the lack of selectivity; therefore, the combination of magnetic iron oxide nanoparticles with photosensitizer is a new and promising approach in PDT. In this direction, this chapter discusses the recent advantages in the design and applications of magnetic iron oxide nanoparticles in conjugation with photosensitizer in PDT to combat cancer .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1O2 :

Singlet oxygen

3O2 :

Triplet oxygen

AHP:

Hyaluronic acid

AIPcS4:

Tetrasulfonic phthalocyanine aluminum

Ce6:

Chlorin e6

CSQ:

Chitosan quaternary ammonium

DOX:

Doxorubicin

Eca-109:

Esophageal squamous carcinoma

EPR:

Enhanced permeability and retention

ESIONs:

Extremely small iron oxide nanoparticles

FDA:

Food and Drug Administration

Fe3O4 :

Magnetite

HeLa:

Human cervical cancer cell line

HMNSs:

Hollow magnetic nanospheres

HP:

Hematoporphyrin

IC50 :

Maximal inhibitory concentration

IONCs:

Iron oxide nanoclusters

IR820:

Indocyanine green

Jurkat:

Human T-cell leukemia cells

LED:

Light-emitting diode

MCF-7:

Human breast cancer cells

MDA-MB-231:

Breast cancer

MLs:

Magnetoliposomes

MNCs:

Magnetic nanoclusters

mSiO2 :

Mesoporous silica

NIH3T3:

Mouse embryonic fibroblast

NRI:

Near infrared

OA:

Oleic acid

PC-3:

Human prostate cancer

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

pheoA:

Pheophorbide A

PHPP:

2,7,12,18-Tetramethyl-3,8-di(1-propoxyethyl)-12,17-bis-(3-hydroxypropyl) porphyrin

PMNs:

Magnetic nanogrenades

PpIX:

Protoporphyrin IX

PS:

Photosensitizer

RGD:

Integrin-binding cell adhesive peptide

rGO:

Reduced graphene oxide

ROS :

Reactive oxygen species

S-180:

Sarcoma cells

SK-OV-3:

Ovarian cancer cells

SPIO:

Superparamagnetic iron oxide

References

  • Allison RR, Mota HC, Bagnato VS, Sibata CH. Bio-nanotechnology and photodynamic therapy—–State of the art review. Photodiagn Photodyn Ther. 2008;5:19–28.

    Article  CAS  Google Scholar 

  • Banerjee SM, MacRobert AJ, Mosse CA, Periera B, Bown SG, Keshtgar MRS. Photodynamic therapy: inception to application in breast cancer. Breast. 2017;31:105–13.

    Article  CAS  PubMed  Google Scholar 

  • Basoglu H, Bilgin MD, Demir MM. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: fabrication, characterization and in vitro study. Photodiagn Photodyn Ther. 2016;13:81–90.

    Article  CAS  Google Scholar 

  • Bechet D, Couleaud P, Frochot C, Viriot ML, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26:612–21.

    Article  CAS  PubMed  Google Scholar 

  • Bhana S, Lin G, Wang L, Starring H, Mishra SR, Liu G, Huang X. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. ACS Appl Mater Interfaces. 2015;7:11637–47.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res. 2011;28:237–59.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee DV, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008;60:1627–3.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZL, Sun Y, Huang P, Yang XX, Zhou XP. Studies on preparation of photosensitizer loaded magnetic silica nanoparticles and their anti-tumor effects for targeting photodynamic therapy. Nanoscale Res Lett. 2009;4:400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Agren H, Ohulchanskyy TY, Prasad PN. Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chem Soc Rev. 2015a;44:1680–713.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu F, Lei Z, Ma L, Wang Z. Fe2O3@Au core@shell nanoparticle–graphene nanocomposites as theranostic agents for bioimaging and chemo-photothermal synergistic therapy. RSC Adv. 2015b;5:84980–7.

    Article  CAS  Google Scholar 

  • Cheng J, Tan G, Li W, Li J, Wang Z, Jin Y. Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide-a-conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer. RSC Adv. 2016;6:37610–20.

    Article  CAS  Google Scholar 

  • Chu M, Shao Y, Peng J, Dai X, Li H, Wu Q, Shi D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials. 2013;34:4078–88.

    Article  CAS  PubMed  Google Scholar 

  • Corato DR, Béalle G, Kolosnjaj-Tabi J, Espinosa A, Clément O, Silva AK, Ménager C, Wilhelm C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano. 2015;9:2904–16.

    Article  PubMed  Google Scholar 

  • Daniele MA, Shaughnessy ML, Roeder R, Childress A, Bandera YP, Foulger S. Magnetic nanoclusters exhibiting protein-activated near-infrared fluorescence. ACS Nano. 2013;7:203–13.

    Article  CAS  PubMed  Google Scholar 

  • Galli M, Moschini E, Dozzi MV, Arosio P, Panigati M, D’Alfonso L, D’Alfonso L, Mantecca P, Lascialfari A, D’Alfonso G, Maggioni D. SPIO@SiO2–Re@PEG nanoparticles as magneto-optical dual probes and sensitizers for photodynamic therapy. RSC Adv. 2016;6:38521–32.

    Article  CAS  Google Scholar 

  • Gangopadhyay M, Mukhopadhyay SK, Karthik S, Barmana S, Pradeep Singh ND. Targeted photoresponsive TiO2–coumarin nanoconjugate for efficient combination therapy in MDA-MB-231 breast cancer cells: synergic effect of photodynamic therapy (PDT) and anticancer drug chlorambucil. Med Chem Commun. 2015;6:769–77.

    Article  CAS  Google Scholar 

  • Guo X, Wu Z, Li W, Wang Z, Li Q, Kong F, Zhang H, Zhu X, Du YP, Jin Y, Du Y, You J. Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Appl Mater Interfaces. 2016;8:3092–106.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, He S, Cao W, Cai K, Liang X-J. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale. 2012;4:6135–49.

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496:191–218.

    Article  CAS  PubMed  Google Scholar 

  • Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22:1879–903.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Chung K, Lee S, Kim DH, Lee H. Near-infrared light-responsive nanomaterials for cancer theranostics. WIREs Nanomedicine Nanobiotechnol. 2016a;8:23–45.

    Article  CAS  Google Scholar 

  • Kim KS, Kim J, Lee JY, Matsuda S, Hideshima S, Mori Y, Osaka T, Na K. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy. Nanoscale. 2016b;8:11625–34.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim KS, Na K. Caffeic acid-coated multifunctional magnetic nanoparticles for the treatment and bimodal imaging of tumours. J Photochem Photobiol B. 2016;160:210–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee HH, Choi MG, Hasan T. Application of photodynamic therapy in gastrointestinal disorders: an outdated or re-emerging technique? Korean J Intern Med. 2017;32:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang C, Cheng L, Gong H, Yin S, Gong Q, Yonggang L, Zhuang L. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials. 2013;34:9160–70.

    Article  CAS  PubMed  Google Scholar 

  • Ling D, Park W, Park SJ, Lu Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K, Hyeon T. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc. 2014;136:5647–5.

    Article  CAS  PubMed  Google Scholar 

  • Mbakidi JP, Drogat N, Granet R, Ouk TS, Ratinaud MH, Rivière E, Verdier M, Sol V. Hydrophilic chlorin-conjugated magnetic nanoparticles-potential anticancer agent for the treatment of melanoma by PDT. Bioorg Med Chem Lett. 2013;23:2486–90.

    Article  CAS  PubMed  Google Scholar 

  • Nafiujjaman M, Revuri V, Nurunnabi M, Cho KJ, Lee YK. Photosensitizer conjugated iron oxide nanoparticles for simultaneous in vitro magneto-fluorescent imaging guided photodynamic therapy. Chem Commun. 2015;51:5687–90.

    Article  CAS  Google Scholar 

  • Nam KC, Choi KH, Lee KD, Kim JH, Jung JS, Park BJ. Particle size dependent photodynamic anticancer activity of hematoporphyrin-conjugated Fe3O4 particles. J Nanomater. 2016;2016:1278393.

    Google Scholar 

  • Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV. Nanodrug applications in photodynamic therapy. Photodiagn Photodyn Ther. 2011;8:14–29.

    Article  CAS  Google Scholar 

  • Qin Z, Du S, Luo Y, Liao Z, Zuo F, Luo J. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe3O4@Mn2+-doped NaYF4:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water. Appl Surf Sci. 2016;378:174–80.

    Article  CAS  Google Scholar 

  • Sakr MH, Halabi MN, Kalash LN, Al-Ghadban SI, Rammah MK, Sabban MEE, Bouhadir KH, Ghaddar TH. Synthesis and in vitro cytotoxicity evaluation of ruthenium polypyridyl-sensitized paramagnetic titania nanoparticles for photodynamic therapy. RSC Adv. 2016;6:47520–9.

    Article  CAS  Google Scholar 

  • Seabra AB, Duran N. Nanotoxicology of metal oxide nanoparticles. Metals. 2015;5:934–75.

    Article  CAS  Google Scholar 

  • Seabra AB, Haddad PS, Duran N. Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET Nanobiotechnol. 2013;7:90–9.

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Pasquôto T, Ferrarini AC, Santos Mda C, Haddad PS, de Lima R. Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and S-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment. Chem Res Toxicol. 2014;27:1207–18.

    Article  CAS  PubMed  Google Scholar 

  • Smith BE, Roder PB, Hanson JL, Manandhar S, Devaraj A, Perea DE. Singlet-oxygen generation from individual semiconducting and metallic nanostructures during near-infrared laser trapping. ACS Photon. 2015;2(4):559–64.

    Article  CAS  Google Scholar 

  • Thandu M, Rapozzi V, Xodo L, Albericio F, Comuzzi C, Cavalli S. “Clicking” porphyrins to magnetic nanoparticles for photodynamic therapy. Chem Plus Chem. 2014;79:90–8.

    CAS  Google Scholar 

  • Unterweger H, Subatzus D, Tietze R, Janko C, Poettler M, Stiegelschmitt A, Schuster M, Maake C, Boccaccini AR, Alexiou C. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy. Int J Nanomedicine. 2015;10:6985–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, Zhang Y, Zhang W, Zou H. Robust two-photon visualized nanocarrier with dual targeting ability for controlled chemo-photodynamic synergistic treatment of cancer. ACS Appl Mater Interfaces. 2015;7:9608–18.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Gao R, Zhou F, Selke M. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J Mater Chem. 2004;14:487–93.

    Article  CAS  Google Scholar 

  • Wo F, Xu R, Shao Y, Zhang Z, Chu M, Shi D, Liu S. A multimodal system with synergistic effects of magneto-mechanical, photothermal, photodynamic and chemo therapies of cancer in Grapheme-quantum dot-coated hollow magnetic nanospheres. Theranostics. 2016;6:485–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Xiang L, Ren W, Zheng J, Li T, Chen B. Multifunctional photosensitizer-conjugated core–shell Fe3O4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells. RSC Adv. 2013;3:13915–25.

    Article  CAS  Google Scholar 

  • Zeng L, Luo L, Pan Y, Luo S, Lu G, Wu A. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Nanoscale. 2015;7:8946–54.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chai A. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light. J Inorg Biochem. 2012;117:71–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Chen Z, Zhao H, Zhang D, Tao L, Lan M. Multifunctional magnetic nanoparticles for simultaneous cancer near-infrared imaging and targeting photodynamic therapy. RSC Adv. 2014;4:62153–9.

    Article  CAS  Google Scholar 

  • Zhou H, Hou X, Liu Y, Zhao T, Shang Q, Tang J, Liu J, Wang Y, Wu Q, Luo Z, Wang H, Chen C. Superstable magnetic nanoparticles in conjugation with near-infrared dye as a multimodal theranostic platform. ACS Appl Mater Interfaces. 2016;8:4424–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedea B. Seabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seabra, A.B. (2017). Iron Oxide Magnetic Nanoparticles in Photodynamic Therapy: A Promising Approach Against Tumor Cells. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_1

Download citation

Publish with us

Policies and ethics