Skip to main content

Combinations of Genomically and Immune-Targeted Therapies in Early-Phase Clinical Trials

  • Chapter
  • First Online:
Early Phase Cancer Immunotherapy

Part of the book series: Current Cancer Research ((CUCR))

  • 963 Accesses

Abstract

Advances in cancer treatment have evolved from relatively nonspecific application of cytotoxic agents to mechanism-based therapies targeting oncogenic signaling pathways and, more recently, to the development of immune-based therapies that seek to activate patients’ own immune system in order to reinitiate the antitumor immune response. Some genomically targeted therapies, in addition to inhibiting molecular pathways driving tumor growth and maintenance, also possess immune-modulatory effects such as increasing tumor immunogenicity, in part by increasing T-cell trafficking into the tumor stroma and enhancing expression of tumor antigens. These observations raise the intriguing possibility that some genomically targeted therapies may be effectively combined with immunotherapies to improve overall clinical outcomes. Here, we discuss the preclinical data that serve as the foundation for testing genomically targeted therapies with immune checkpoint inhibitors, such as monoclonal antibodies targeting cytotoxic T-lymphocyte associated antigen 4, programmed cell death protein 1, and PD-1 ligand 1, as well as the clinical status of key combination trials.

Funding: Funded in part by National Cancer Institute grant P30 CA016672 and the Joan and Irwin Jacobs Fund philanthropic fund.

Author’s Disclosures

Dr. Razelle Kurzrock receives research funds from Sequenom, Guardant, Foundation Medicine, Genentech, Pfizer, and Merck Serono, consultant fees from XBiotech and Actuate Therapeutics, and has an ownership interest in Curematch, Inc. Dr. Sandip Patel receives research funding from: Bristol-Myers Squibb, Eli Lilly, Incyte, MedImmune, Pfizer, Roche/Genentech, Xcovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eroglu Z, Ribas A (2016) Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther Adv Med Oncol 8(1):48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robert C et al (2015) Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  3. Chen Daniel S, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  CAS  PubMed  Google Scholar 

  4. Hughes PE, Caenepeel S, Wu LC (2016) Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol 37:462–476

    Article  CAS  PubMed  Google Scholar 

  5. Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr Opin Immunol 27:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    Article  CAS  PubMed  Google Scholar 

  7. Caunt CJ, Sale MJ, Smith PD, Cook SJ (2015) MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 15(10):577–592

    Article  CAS  PubMed  Google Scholar 

  8. Forbes SA et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43(D1):D805–D811

    Article  CAS  PubMed  Google Scholar 

  9. Santarpia L, Lippman SL, El-Naggar AK (2012) Targeting the mitogen-activated protein kinase RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16(1):103–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eser S, Schnieke A, Schneider G, Saur D (2014) Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer 111(5):817–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernández-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Genes Cancer 2(3):344–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Holderfield M, Deuker MM, McCormick F, McMahon M (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14(7):455–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006) The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203(7):1651–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frederick DT et al (2013) BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res 19(5):1225–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khalili JS et al (2012) Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res 18(19):5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beaupre DM et al (1999) Autocrine interleukin-1β production in leukemia. Cancer Res 59(12):2971

    CAS  PubMed  Google Scholar 

  17. Liu C et al (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19(2):393

    Article  CAS  PubMed  Google Scholar 

  18. Knight DA et al (2013) Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J Clin Invest 123(3):1371–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ott P, Bhardwaj N (2013) Impact of MAPK pathway activation in BRAFV600 melanoma on T cell and dendritic cell function. Front Immunol 4:346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Catanzaro JM et al (2014) Oncogenic Ras induces inflammatory cytokine production by upregulating the squamous cell carcinoma antigens SerpinB3/B4. Nat Commun 5:3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lesina M et al (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19(4):456–469

    Article  CAS  PubMed  Google Scholar 

  22. West NR, McCuaig S, Franchini F, Powrie F (2015) Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 15(10):615–629

    Article  CAS  PubMed  Google Scholar 

  23. Bunt SK et al (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67(20):10019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bissonnette M et al (2000) Mutational and nonmutational activation of p21ras in rat colonic azoxymethane-induced tumors: effects on mitogen-activated protein kinase, cyclooxygenase-2, and cyclin D1. Cancer Res 60(16):4602–4609

    CAS  PubMed  Google Scholar 

  25. Fujishita T, Kajino-Sakamoto R, Kojima Y, Taketo MM, Aoki M (2015) Antitumor activity of the MEK inhibitor trametinib on intestinal polyp formation in ApcΔ716 mice involves stromal COX-2. Cancer Sci 106(6):692–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang D, DuBois RN (2009) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29(6):781–788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Charo C et al (2013) PGE(2) regulates pancreatic stellate cell activity via the EP4 receptor. Pancreas 42(3):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collins MA et al (2012) Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest 122(2):639–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thayer SP et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425(6960):851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pylayeva-Gupta Y, Lee Kyoung E, Hajdu Cristina H, Miller G, Bar-Sagi D (2012) Oncogenic kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21(6):836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bayne Lauren J et al (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kono M et al (2006) Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol Cancer Res 4(10):779

    Article  CAS  PubMed  Google Scholar 

  33. Atkins D et al (2004) MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer 109(2):265–273

    Article  CAS  PubMed  Google Scholar 

  34. Mimura K et al (2013) The MAPK pathway is a predominant regulator of HLA-A expression in esophageal and gastric cancer. J Immunol 191(12):6261–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Jawhari JJ et al (2014) Blocking oncogenic RAS enhances tumour cell surface MHC class I expression but does not alter susceptibility to cytotoxic lymphocytes. Mol Immunol 58(2):160–168

    Article  CAS  PubMed  Google Scholar 

  36. Boni A et al (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70(13):5213

    Article  CAS  PubMed  Google Scholar 

  37. Sapkota B, Hill CE, Pollack BP (2013) Vemurafenib enhances MHC induction in BRAFV600E homozygous melanoma cells. OncoImmunology 2(1):e22890

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kakavand H et al (2015) PD-L1 expression and tumor-infiltrating lymphocytes define different subsets of MAPK inhibitor–treated melanoma patients. Clin Cancer Res 21(14):3140

    Article  CAS  PubMed  Google Scholar 

  39. Cooper ZA et al (2013) BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. OncoImmunology 2(10):e26615

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sers C et al (2009) Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int J Cancer 125(7):1626–1639

    Article  CAS  PubMed  Google Scholar 

  41. Koelzer VH et al (2015) Active immunosurveillance in the tumor microenvironment of colorectal cancer is associated with low frequency tumor budding and improved outcome. Transl Res 166(2):207–217

    Article  CAS  PubMed  Google Scholar 

  42. Ebert Peter JR et al (2016) MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44(3):609–621

    Article  CAS  PubMed  Google Scholar 

  43. Hu-Lieskovan S et al (2015) Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci Transl Med 7(279):279ra241–279ra241

    Article  CAS  Google Scholar 

  44. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J (2013) Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 368(14):1365–1366

    Article  CAS  PubMed  Google Scholar 

  45. Minor DR, Puzanov I, Callahan MK, Hug BA, Hoos A (2015) Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment Cell Melanoma Res 28(5):611–612

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nikanjam M, Liu S, Kurzrock R (2016) Dosing targeted and cytotoxic two-drug combinations: lessons learned from analysis of 24,326 patients reported 2010 through 2013. Int J Cancer 139(9):2135–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu S, Nikanjam M, Kurzrock R (2016) Dosing de novo combinations of two targeted drugs: towards a customized precision medicine approach to advanced cancers. Oncotarget 7(10):11310–11320

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ribas ABM, Lutzky J, Lawrence PD, Robert C et al (2015) Phase I study combining anti-PD-L1 (MEDI4736) with BRAF (dabrafenib) and/or MEK (trametinib) inhibitors in advanced melanoma. ASCO Annual Meeting, J Clin Oncol 33, 2015 (suppl; abstr 3003)

    Google Scholar 

  49. Ribas A HS, Lawrence DP, Atkinson V et al (2016) Pembrolizumab (pembro) in combination with dabrafenib (D) and trametinib (T) for BRAF-mutant advanced melanoma: phase 1 KEYNOTE-022 study. ASCO Annual Meeting 2016, J Clin Oncol 34, 2016 (suppl; abstr 3014)

    Google Scholar 

  50. Bendell JKW, Chee EC et al (2016) Safety and efficacy of cobimetinib (cobi) and atezolizumab (atezo) in a Phase 1b study of metastatic colorectal cancer (mCRC). ESMO 18th World Congress of Gastrointestinal Cancer, (abstr LBA-01)

    Google Scholar 

  51. ASCO-POST (2016) Anti–PD-L1 immunotherapy shows response in microsatellite-stable metastatic colorectal cancer in combination with MEK inhibition

    Google Scholar 

  52. Thakur MD, Stuart DD (2013) The evolution of melanoma resistance reveals therapeutic opportunities. Cancer Res 73(20):6106

    Article  PubMed  CAS  Google Scholar 

  53. Moriceau G et al (2015) Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 27(2):240–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non–small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc Mayo Clin 83(5):584–594

    Article  PubMed  Google Scholar 

  55. Rosell R et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361(10):958–967

    Article  CAS  PubMed  Google Scholar 

  56. Hallberg B, Palmer RH (2013) Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 13(10):685–700

    Article  CAS  PubMed  Google Scholar 

  57. Thomas A, Liu SV, Subramaniam DS, Giaccone G (2015) Refining the treatment of NSCLC according to histological and molecular subtypes. Nat Rev Clin Oncol 12(9):511–526

    Article  CAS  PubMed  Google Scholar 

  58. Katayama R et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 4(120):120ra117–120ra117

    Article  CAS  Google Scholar 

  59. Gainor JF et al (2016) Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 6(10):1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma SV, Bell DW, Settleman J, Haber DA (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7(3):169–181

    Article  CAS  PubMed  Google Scholar 

  61. Soria J-C, Mok TS, Cappuzzo F, Jänne PA (2012) EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev 38(5):416–430

    Article  CAS  PubMed  Google Scholar 

  62. Pao W et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101:13306–13311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kancha RK, von Bubnoff N, Peschel C, Duyster J (2009) Functional analysis of epidermal growth factor receptor (EGFR) mutations and potential implications for EGFR targeted therapy. Clin Cancer Res 15(2):460

    Article  CAS  PubMed  Google Scholar 

  64. Yang JC-H et al (2015) Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 16(2):141–151

    Article  CAS  PubMed  Google Scholar 

  65. Pao W et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3):e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Thress KS et al (2015) Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med 21(6):560–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Soda M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566

    Article  CAS  PubMed  Google Scholar 

  68. Katayama R, Lovly CM, Shaw AT (2015) Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res 21(10):2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi YL et al (2008) Identification of novel isoforms of the EML4-ALK transforming gene in non–small cell lung cancer. Cancer Res 68(13):4971

    Article  CAS  PubMed  Google Scholar 

  70. Takeuchi K et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18(3):378–381

    Article  CAS  PubMed  Google Scholar 

  71. Rikova K et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6):1190–1203

    Article  CAS  PubMed  Google Scholar 

  72. Zou HY et al (2015) PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to 1(st) and 2(nd) generation ALK inhibitors in pre-clinical models. Cancer Cell 28(1):70–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ott PA (2015) Combined BRAF and MEK inhibition in BRAF V600E mutant melanoma: a synergistic and potentially safe combination partner with immunotherapy. Ann Transl Med; Vol 3, No 20 (November 2015): Ann Transl Med 3:313

    Google Scholar 

  74. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51

    Article  CAS  PubMed  Google Scholar 

  75. Marrugal Á, Ojeda L, Paz-Ares L, Molina-Pinelo S, Ferrer I (2016) Proteomic-based approaches for the study of cytokines in lung cancer. Dis Markers 2016:2138627

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fukuyama T et al (2007) Cytokine production of lung cancer cell lines: correlation between their production and the inflammatory/immunological responses both in vivo and in vitro. Cancer Sci 98(7):1048–1054

    Article  CAS  PubMed  Google Scholar 

  77. Gao SP et al (2007) Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117(12):3846–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee H-J et al (2014) Drug resistance via feedback activation of stat3 in oncogene-addicted cancer cells. Cancer Cell 26(2):207–221

    Article  CAS  PubMed  Google Scholar 

  79. Kim SM et al (2012) Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation. Mol Cancer Ther 11:2254–2264

    Article  CAS  PubMed  Google Scholar 

  80. Haura EB, Zheng Z, Song L, Cantor A, Bepler G (2005) Activated epidermal growth factor receptor–stat-3 signaling promotes tumor survival <em>In vivo</em> in non–small cell lung cancer. Clin Cancer Res 11(23):8288

    Article  CAS  PubMed  Google Scholar 

  81. Wang T et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54

    Article  PubMed  CAS  Google Scholar 

  82. Yeh HH, Lai WW, Chen HHW, Liu HS, Su WC (2006) Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 25(31):4300–4309

    Article  CAS  PubMed  Google Scholar 

  83. Sandler A et al (2006) Paclitaxel–carboplatin alone or with bevacizumab for non–small-cell lung cancer. N Engl J Med 355(24):2542–2550

    Article  CAS  PubMed  Google Scholar 

  84. Hato T, Zhu AX, Duda DG (2016) Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy 8(3):299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pore N et al (2006) EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1–independent and HIF-1–dependent mechanisms. Cancer Res 66(6):3197

    Article  CAS  PubMed  Google Scholar 

  86. Naumov GN et al (2009) Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. Clin Cancer Res 15(10):3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sunaga N et al (2012) Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int J Cancer 130(8):1733–1744

    Article  CAS  PubMed  Google Scholar 

  88. Umekawa K et al (2013) Plasma RANTES, IL-10, and IL-8 levels in non–small-cell lung cancer patients treated with EGFR-TKIs. BMC Res Notes 6(1):139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Akbay EA et al (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3(12):1355

    Article  CAS  PubMed  Google Scholar 

  90. Koh J et al (2016) EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1α and STAT3. Oncoimmunology 5(3):e1108514

    Article  PubMed  CAS  Google Scholar 

  91. Hamedani FS et al (2014) Crizotinib (PF-2341066) induces apoptosis due to downregulation of pSTAT3 and BCL-2 family proteins in NPM-ALK+ anaplastic large cell lymphoma. Leuk Res 38(4):503–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun Y et al (2013) ALK Inhibitor PF02341066 (Crizotinib) increases sensitivity to radiation in non–small cell lung cancer expressing EML4-ALK. Mol Cancer Ther 12(5):696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim H et al (2011) EGFR inhibitors enhanced the susceptibility to NK cell-mediated lysis of lung cancer cells. J Immunother 34:372–381

    Article  CAS  PubMed  Google Scholar 

  94. He S et al (2013) Enhanced interaction between natural killer cells and lung cancer cells: involvement in gefitinib-mediated immunoregulation. J Transl Med 11(1):186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pollack BP, Sapkota B, Cartee TV (2011) Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes. Clin Cancer Res 17(13):4400

    Article  CAS  PubMed  Google Scholar 

  96. Brea EJ et al (2016) Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol Res 4(11):936

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lastwika KJ et al (2016) Control of PD-L1 expression by oncogenic activation of the AKT–mTOR pathway in non–small cell lung cancer. Cancer Res 76(2):227

    Article  CAS  PubMed  Google Scholar 

  98. D’Incecco A et al (2015) PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer 112(1):95–102

    Article  PubMed  CAS  Google Scholar 

  99. Azuma K et al (2014) Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol 25(10):1935–1940

    Article  CAS  PubMed  Google Scholar 

  100. Ota K et al (2015) Induction of PD-L1 expression by the EML4–ALK oncoprotein and downstream signaling pathways in non–small cell lung cancer. Clin Cancer Res 21(17):4014

    Article  CAS  PubMed  Google Scholar 

  101. Gainor JF et al (2016) EGFR Mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res 22(18):4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huynh TG et al (2016) Programmed cell death ligand 1 expression in resected lung adenocarcinomas: association with immune microenvironment. J Thorac Oncol 11(11):1869–1878

    Article  PubMed  Google Scholar 

  103. Goodman A, Patel SP, Kurzrock R (2017) PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol 14(4):203–220

    Article  CAS  PubMed  Google Scholar 

  104. Khagi Y, Kurzrock R, Patel SP (2017) Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Rev 36(1):179–190

    Article  CAS  PubMed  Google Scholar 

  105. Garon EB et al (2015) Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  106. Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med 373(17):1627–1639

    Article  CAS  PubMed  Google Scholar 

  107. Herbst RS et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  CAS  PubMed  Google Scholar 

  108. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rizvi NA et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science (New York, NY) 348(6230):124–128

    Article  CAS  PubMed Central  Google Scholar 

  110. Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yadav M et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576

    Article  CAS  PubMed  Google Scholar 

  112. Champiat S et al (2016) Hyperprogressive disease (HPD) is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23:1920–1928

    Article  PubMed  CAS  Google Scholar 

  113. Kato S et al (2017) Hyper-progressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res 23(15):4242–4250

    Google Scholar 

  114. Gettinger S, Politi K (2016) PD-1 Axis inhibitors in EGFR- and ALK-driven lung cancer: lost cause? Clin Cancer Res 22(18):4539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhou P et al (2014) In vivo discovery of immunotherapy targets in the tumor microenvironment. Nature 506(7486):52–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rizvi AN, Chow LQ, Borghaei H, Shen Y et al (2014) Safety and response with nivolumab (anti-PD-1; BMS-936558, ONO-4538) plus erlotinib in patients (pts) with epidermal growth factor receptor mutant (EGFR MT) advanced NSCLC. J Clin Oncol 32(5s):8022

    Google Scholar 

  117. Gibbons LD CQ, Kim D, Kim S, Yeh T et al (2016) Efficacy, safety and tolerability of MEDI4736 (durvalumab [D]), a human IgG1 anti-programmed cell death-ligand-1 (PD-L1) antibody, combined with gefitinib (G): a phase I expansion in TKI-naïve patients (pts) with EGFR mutant NSCLC. ELCC 2016 (abstr 57O)

    Google Scholar 

  118. Ahn MYJ, Yu H et al (2016) Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. ELCC 2016, (abstr136O)

    Google Scholar 

  119. Patel SP, Kurzrock R (2015) PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14(4):847

    Article  CAS  PubMed  Google Scholar 

  120. Herbst RS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Taube JM et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res: Off J Am Assoc Cancer Res 20(19):5064–5074

    Article  CAS  Google Scholar 

  122. Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dawson Mark A, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    Article  CAS  PubMed  Google Scholar 

  124. Dawson MA, Kouzarides T, Huntly BJP (2012) Targeting epigenetic readers in cancer. N Engl J Med 367(7):647–657

    Article  CAS  PubMed  Google Scholar 

  125. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691

    Article  CAS  PubMed  Google Scholar 

  126. West AC, Smyth MJ, Johnstone RW (2014) The anticancer effects of HDAC inhibitors require the immune system. OncoImmunology 3(1):e27414

    Article  PubMed  PubMed Central  Google Scholar 

  127. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124(1):30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Peterson LF, Zhang D-E (2004) The 8;21 translocation in leukemogenesis. Oncogene 23(24):4255–4262

    Article  CAS  PubMed  Google Scholar 

  129. Insinga A et al (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11(1):71–76

    Article  CAS  PubMed  Google Scholar 

  130. Hornig E, Heppt MV, Graf SA, Ruzicka T, Berking C (2016) Inhibition of histone deacetylases in melanoma—a perspective from bench to bedside. Exp Dermatol 25(11):831–838

    Article  CAS  PubMed  Google Scholar 

  131. Weichert W et al (2008) Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res 14(6):1669

    Article  CAS  PubMed  Google Scholar 

  132. Krusche CA et al (2005) Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat 90(1):15–23

    Article  CAS  PubMed  Google Scholar 

  133. Minamiya Y et al (2011) Expression of histone deacetylase 1 correlates with a poor prognosis in patients with adenocarcinoma of the lung. Lung Cancer 74(2):300–304

    Article  PubMed  Google Scholar 

  134. Rikimaru T et al (2007) Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology 72(1–2):69–74

    Article  CAS  PubMed  Google Scholar 

  135. Weichert W (2009) HDAC expression and clinical prognosis in human malignancies. Cancer Lett 280(2):168–176

    Article  CAS  PubMed  Google Scholar 

  136. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26(37):5420–5432

    Article  CAS  PubMed  Google Scholar 

  137. Eot-Houllier G, Fulcrand G, Magnaghi-Jaulin L, Jaulin C (2009) Histone deacetylase inhibitors and genomic instability. Cancer Lett 274(2):169–176

    Article  CAS  PubMed  Google Scholar 

  138. Ocker M (2010) Deacetylase inhibitors – focus on non-histone targets and effects. World J Biol Chem 1(5):55–61

    Article  PubMed  PubMed Central  Google Scholar 

  139. Terranova-Barberio M, Thomas S, Munster PN (2016) Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors. Immunotherapy 8(6):705–719

    Article  CAS  PubMed  Google Scholar 

  140. Ellis L, Hammers H, Pili R (2009) Targeting tumor angiogenesis with histone deacetylase inhibitors. Cancer Lett 280(2):145–153

    Article  CAS  PubMed  Google Scholar 

  141. Kim MS et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7(4):437–443

    Article  PubMed  Google Scholar 

  142. Bantscheff M et al (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotech 29(3):255–265

    Article  CAS  Google Scholar 

  143. Mazumdar S et al (2015) CoREST1 promotes tumor formation and tumor stroma interactions in a mouse model of breast cancer. PLoS One 10(3):e0121281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Hellebrekers DMEI et al (2006) Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res 66(22):10770

    Article  CAS  PubMed  Google Scholar 

  145. Hellebrekers DMEI et al (2007) Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res 67(9):4138

    Article  CAS  PubMed  Google Scholar 

  146. Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G (1996) Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56(5):1111

    CAS  PubMed  Google Scholar 

  147. Dirkx AEM et al (2003) Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 63(9):2322

    CAS  PubMed  Google Scholar 

  148. Zheng H et al (2016) HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res 22(16):4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31(1):51–72

    Article  CAS  PubMed  Google Scholar 

  150. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195

    Article  CAS  PubMed  Google Scholar 

  151. Christiansen AJ et al (2011) Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc Natl Acad Sci 108(10):4141–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. West AC et al (2013) An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res 73(24):7265

    Article  CAS  PubMed  Google Scholar 

  153. Kroesen M et al (2014) HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget 5(16):6558–6572

    Article  PubMed  PubMed Central  Google Scholar 

  154. Armeanu S et al (2005) Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 65:6321–6329

    Article  CAS  PubMed  Google Scholar 

  155. Skov S et al (2005) Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3–dependent expression of MHC class I–related chain A and B. Cancer Res 65(23):11136

    Article  CAS  PubMed  Google Scholar 

  156. Lopez-Soto A, Folgueras AR, Seto E, Gonzalez S (2009) HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: potential implications for the immunosurveillance of cancer. Oncogene 28(25):2370–2382

    Article  CAS  PubMed  Google Scholar 

  157. Berghuis D et al (2012) Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clinical Sarcoma Research 2(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Skov S et al (2005) Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 65:6321–6329

    Article  CAS  Google Scholar 

  159. Verhoeven DH et al (2008) NK cells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways. Mol Immunol 45:3917–3925

    Article  CAS  PubMed  Google Scholar 

  160. Chacon AJ, Schutsky K, Powell JD (2016) The impact of chemotherapy, radiation and epigenetic modifiers in cancer cell expression of immune inhibitory and stimulatory molecules and anti-tumor efficacy. Vaccine 4(4):43

    Article  Google Scholar 

  161. Vo DD et al (2009) Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824. Cancer Res 69(22):8693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Setiadi AF et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68(23):9601

    Article  CAS  PubMed  Google Scholar 

  163. Khan ANH, Gregorie CJ, Tomasi TB (2008) Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother 57(5):647–654

    Article  CAS  PubMed  Google Scholar 

  164. Woan KV et al (2015) Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: enhanced antitumor immunity and impaired cell proliferation. Mol Oncol 9(7):1447–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gameiro SR, Malamas AS, Tsang KY, Ferrone S, Hodge JW (2016) Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget 7(7):7390–7402

    Article  PubMed  PubMed Central  Google Scholar 

  166. Woods DM et al (2015) HDAC Inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res 3:1375–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Leggatt GR, Gabrielli B (2012) Histone deacetylase inhibitors in the generation of the anti-tumour immune response. Immunol Cell Biol 90(1):33–38

    Article  CAS  PubMed  Google Scholar 

  168. De Zoeten EF, Wang L, Sai H, Dillmann WH, Hancock WW (2010) Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 138(2):583–594

    Article  PubMed  CAS  Google Scholar 

  169. Tao R et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13(11):1299–1307

    Article  CAS  PubMed  Google Scholar 

  170. Villagra A et al (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100

    Article  CAS  PubMed  Google Scholar 

  171. Sahakian E et al (2015) Histone deacetylase 11: a novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Mol Immunol 63(2):579–585

    Article  CAS  PubMed  Google Scholar 

  172. Kim K et al (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci 111(32):11774–11779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ibrahim N et al (2016) A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med 5(11):3041–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cheng FLS, Wang H, Chen J, Villagra A et al (2016) In vitro and in vivo antimelanoma activity of ricolinostat, a selective HDAC6 inhibitor with immunomodulatory properties. ASCO Annual Meeting, J Clin Oncol 34, 2016 (suppl; abstr e21075)

    Google Scholar 

  175. Laino AS, Woods DM, Sarnaik A, Quayle S et al (2016) Selective histone deacetylase inhibition augments melanoma immunotherapy. ASCO Annual Meeting 2016, J Clin Oncol 34, 2016 (suppl; abstr e14521)

    Google Scholar 

  176. Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468

    Article  CAS  PubMed  Google Scholar 

  177. FDA (FARYDAK® (panobinostat) [package insert] (2015) Novartis Pharmaceuticals Corporation. February 2015. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205353s000lbl.pdf

  178. FDA (ZOLINZA® (vorinostat) [package insert] (2015) Merck Sharp & Dohme Corp., December 2015. https://www.merck.com/product/usa/pi_circulars/z/zolinza/zolinza_pi.pdf

  179. Pili R et al (2012) Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer 106(1):77–84

    Article  CAS  PubMed  Google Scholar 

  180. Johnson MLAA, Ramalingam SS, Janne PA et al (2016) Preliminary results of ENCORE 601, a phase 1b/2, open-label study of entinostat (ENT) in combination with pembrolizumab (PEMBRO) in patients with non-small cell lung cancer (NSCLC). ASCO Annual Meeting 2016, J Clin Oncol 34, 2016 (suppl; abstr e20659)

    Google Scholar 

  181. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ott PA, Hodi FS, Buchbinder EI (2015) Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Front Oncol 5:202

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kalbasi A, June CH, Haas N, Vapiwala N (2013) Radiation and immunotherapy: a synergistic combination. J Clin Invest 123(7):2756–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bernstein MB, Krishnan S, Hodge JW, Chang JY (2016) Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol 13(8):516–524

    Article  CAS  PubMed  Google Scholar 

  185. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28(6):690–714

    Article  CAS  PubMed  Google Scholar 

  186. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic [bgr]-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  PubMed  Google Scholar 

  187. Peng W et al (2016) Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov 6(2):202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maulik Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, M., Patel, S.P., Kurzrock, R. (2018). Combinations of Genomically and Immune-Targeted Therapies in Early-Phase Clinical Trials. In: Patel, S., Kurzrock, R. (eds) Early Phase Cancer Immunotherapy . Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-63757-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63757-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63756-3

  • Online ISBN: 978-3-319-63757-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics