Skip to main content

Combinatorial Immunotherapy and Chemotherapy

  • Chapter
  • First Online:

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Immunotherapy has emerged as an effective strategy in several cancer types that, unlike most conventional therapies, can deliver durable disease control with a favorable toxicity profile. In an unselected population, however, the majority of patients will not respond. Combining immunotherapy with other treatment modalities may increase the likelihood and potentially the depth of response. One approach is to combine immunotherapy with cytotoxic chemotherapy. There are both potential benefits and limitations to this approach, and while early data are encouraging, more work is needed to optimize these combinations and clearly define their role in the therapeutic landscape.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Floros T, Tarhini AA (2015) Anticancer cytokines: biology and clinical effects of interferon-a2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin Oncol 42(4):539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antonia SJ, Larkin J, Ascierto PA (2014) Immuno-oncology combinations: a review of clinical experience and future prospects. Clin Cancer Res 20(24):6258–6268

    Article  CAS  PubMed  Google Scholar 

  3. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    Article  CAS  PubMed  Google Scholar 

  4. Kershaw MH, Devaud C, John LB et al (2013) Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment. Oncoimmunology 2(9):e25962

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jure-Kunkel M, Masters G, Girit E et al (2013) Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models. Cancer Immunol Immunother 62(9):1533–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Su Z, Ni P, Zhou C et al (2016) Myeloid-derived suppressor cells in cancers and inflammatory diseases: angel or demon? Scand J Immunol 84(5):25–61

    Article  Google Scholar 

  7. Ko HJ, Kim YJ, Kim YS et al (2007) A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 67(15):7477–7486

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki E, Kapoor V, Jassar AS et al (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721

    Article  CAS  PubMed  Google Scholar 

  9. Vincent J, Mignot G, Calmin F et al (2010) 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70(8):52–61

    Article  Google Scholar 

  10. Tseng CW, Hung CF, Alvarez RD et al (2008) Pretreatment with cisplatin enhances E7-specific CD8+ T-cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14:3185–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu Y, Liu N, Xiong SD et al (2011) CD4+Foxp3+ regulatory t-cell impairment by paclitaxel is independent of Toll-like receptor 4. Scand J Immunol 73(4):301–308

    Article  CAS  PubMed  Google Scholar 

  12. Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  CAS  PubMed  Google Scholar 

  13. Brode S, Raine T, Zaccone P et al (2006) Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+ CD25+ Foxp3+ regulatory T cells. J Immunol 177:6603–6612

    Article  CAS  PubMed  Google Scholar 

  14. Ghiringhelli F, Menard C, Puig PE et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    Article  CAS  PubMed  Google Scholar 

  15. Fridlender ZG, Sun J, Singhal S et al (2010) Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Mol Ther 18(11):1947–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takesue BY, Pyle JM, Mokyr MB (1990) Importance of tumor-specific cytotoxic CD8+ T-cells in eradication of a large subcutaneous MOPC-315 tumor following low-dose melphalan therapy. Cancer Res 50:7641–7649

    CAS  PubMed  Google Scholar 

  17. Mokyr MB, Kalinichenko T, Gorelik L et al (1998) Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 58:5301–5304

    CAS  PubMed  Google Scholar 

  18. Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63:4490–4496

    CAS  PubMed  Google Scholar 

  19. Nowak AK, Robinson BW, Lake RA (2002) Gemcitabine exerts a selective effect on the humoral immune response. Cancer Res 62(8):2353–2358

    CAS  PubMed  Google Scholar 

  20. Wu L, Yun Z, Tagawa T et al (2012) CTLA-4 blockade expands infiltrating T cells and inhibits cancer cell repopulation during the intervals of chemotherapy in murine mesothelioma. Mol Cancer Ther 11:1809–1819

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Adjemian S, Mattarollo SR et al (2013) Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38:729–741

    Article  CAS  PubMed  Google Scholar 

  22. Lesterhuis WJ, Punt CJ, Hato SV et al (2011) Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Invest 121(8):3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shurin GV, Tourkova IL, Kaneno R, Shurin MR (2009) Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12 dependent mechanism. J Immunol 183:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gameiro SR, Caballero JA, Hodge JW (2012) Defining the molecular signature of chemotherapy-mediated lung tumor phenotype modulation and increased susceptibility to T –cell killing. Cancer Biother Radiopharm 27:23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gelbard A, Garnett CT, Abrams SI et al (2006) Combination chemotherapy and radiation of human squamous cell carcinoma of the head and neck augments CTL-mediated lysis. Clin Cancer Res 12:1897–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wan S, Pestka S, Jubin RG et al (2012) Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells. PLoS One 7:e32542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Menard C, Martin F, Apetoh L et al (2008) Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother 57:1579–1587

    Article  CAS  PubMed  Google Scholar 

  28. de Biasi AR, Villena-Vargas J, Adusumilli PS (2014) Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin Cancer Res 20(21):5384–5391

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8:151–160

    Article  CAS  PubMed  Google Scholar 

  30. Negrei C, Bojinca V, Balanescu A et al (2016) Management of rheumatoid arthritis: impact and risks of various therapeutic approaches. Exp Ther Med 11(4):1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruchard M, Mignot G, Derangere V et al (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64

    Article  CAS  PubMed  Google Scholar 

  32. Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639

    Article  CAS  PubMed  Google Scholar 

  33. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  35. Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus Docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389(10066):255–265

    Article  PubMed  Google Scholar 

  36. Reck M, Rodriguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  37. Lynch TJ, Bondarenko I, Luft A et al (2012) Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind multicenter phase II study. Ann Oncol 30(17):2046–2064

    CAS  Google Scholar 

  38. Gadgeel SM, Stevenson J, Langer CJ et al (2016) Pembrolizumab (pembro) plus chemotherapy as front-line therapy for advanced NSCLC: KEYNOTE-021 cohorts A-C. Proc Am Soc Clin Oncol 34:Abstr 9016

    Google Scholar 

  39. Langer CJ, Gadgeel SM, Borghaei H et al (2016) Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 17:1497–1508

    Article  CAS  PubMed  Google Scholar 

  40. Rizvi NA, Hellmann MD, Brahmer JR et al (2016) Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. JCO 34(25):2969–2979

    Article  Google Scholar 

  41. Liu SV, Powderly J, Camidge DR et al (2015) Safety and efficacy of atezolizumab (anti-PDL1) in combination with platinum-based doublet chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). Proc Am Soc Clin Oncol 33:Abstr 8030

    Google Scholar 

  42. Camidge DR, Liu SV, Powderly JD et al (2015) Atezolizumab (MPDL3280A) combined with platinum-based chemotherapy in non-small cell lung cancer (NSCLC): a phase 1b study. J Thorac Oncol 10:Abstr 02.7

    Google Scholar 

  43. Antonia SJ, Lopez-Martin JA, Bendell J et al (2016) Nivolumab alone and nivolumab plus ipilimumab in recurrent small cell lung cancer (Checkmate 032): a multicenter, open-label, phase 1/2 trial. Lancet Oncol 17(7):883–895

    Article  CAS  PubMed  Google Scholar 

  44. Reck M, Bondarenko I, Luft A et al (2013) Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol 24:75–83

    Article  CAS  PubMed  Google Scholar 

  45. Reck M, Luft A, Szczesna A et al (2016) Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J Clin Oncol 34(31):3740–3748

    Article  Google Scholar 

  46. Ono M, Tsuda H, Shimizu C et al (2012) Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple negative breast cancer. Breast Cancer Res Treat 132(3):793–805

    Article  CAS  PubMed  Google Scholar 

  47. Adams S, Diamond JR, Hamilton EP et al (2016) Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). Proc Am Soc Clin Oncol 34:Abstr 1009

    Google Scholar 

  48. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bendell JC, Powderly JD, Lieu CH et al (2015) Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). Proc Am Soc Clin Oncol 33:Abstr 704

    Article  Google Scholar 

  50. Kunk PR, Bauer TW, Slingluff CL, Rahma OE (2016) From bench to bedside a comprehensive review of pancreatic cancer immunotherapy. J Immunother Cancer 4:14

    Article  PubMed  PubMed Central  Google Scholar 

  51. Aglietta M, Barone C, Sawyer MB et al (2014) A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naïve patients with metastatic pancreatic cancer. Ann Oncol 25(9):1750–1755

    Article  CAS  PubMed  Google Scholar 

  52. Bang YJ, Chung HC, Shankaran V et al (2015) Relationship between PD-L1 expression and clinical outcomes in patients with advanced gastric cancer treated with the anti-PD-1 monoclonal antibody pembrolizumab (MK-3475) in KEYNOTE-012. Proc Am Soc Clin Oncol 33:Abstr 4001

    Google Scholar 

  53. Fuchs CS, Ohtsu A, Tabernero J et al (2016) Preliminary safety data from KEYNOTE-059: pembrolizumab plus 5-fluorouracil and cisplatin for first-line treatment of advanced gastric cancer. Proc Am Soc Clin Oncol 34:Abstr 4037

    Google Scholar 

  54. Redman JM, Gibney GT, Atkins MB (2016) Advances in immunotherapy for melanoma. BMC Med 14:20

    Article  PubMed  PubMed Central  Google Scholar 

  55. George DD, Armenio VA, Katz SC (2017) Combinatorial immunotherapy for melanoma. Cancer Gene Ther 24(3):141–147

    Article  CAS  PubMed  Google Scholar 

  56. Hamm C, Verma S, Petrella T et al (2008) Biochemotherapy for the treatment of metastatic malignant melanoma: a systematic review. Cancer Treat Rev 34(2):145–156

    Article  CAS  PubMed  Google Scholar 

  57. Hodi FS, Chesney J, Pavlick AC et al (2016) Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 17(11):1558–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hersh EM, O’Day SJ, Powderly J et al (2011) A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naïve patients with advanced melanoma. Investig New Drugs 29:489–498

    Article  CAS  Google Scholar 

  59. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus Dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    Article  CAS  PubMed  Google Scholar 

  60. Patel SP, Bedikian AY, Papadopoulos NE et al (2011) Ipilimumab plus temozolomide in metastatic melanoma. Proc Am Soc Clin Oncol 29:Abstr 8579

    Article  Google Scholar 

  61. Weber J, Hamid O, Amin A et al (2013) Randomized phase I pharmacokinetic study of ipilimumab with or without one of two different chemotherapy regimens in patients with untreated advanced melanoma. Cancer Immun 13:7

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen V. Liu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeStefano, C.B., Liu, S.V. (2018). Combinatorial Immunotherapy and Chemotherapy. In: Patel, S., Kurzrock, R. (eds) Early Phase Cancer Immunotherapy . Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-63757-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63757-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63756-3

  • Online ISBN: 978-3-319-63757-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics