Skip to main content

Immunotherapeutic Biomarkers and Selection Strategies

  • Chapter
  • First Online:
Early Phase Cancer Immunotherapy

Part of the book series: Current Cancer Research ((CUCR))

  • 959 Accesses

Abstract

Immunotherapy has been one of the recent major breakthroughs in cancer therapy. The basic mechanism of immunotherapy agents is to facilitate the immune system to view cancer cells as a foreign presence. The recent success demonstrated by immune checkpoint inhibition in melanoma has launched a boom in immune checkpoint inhibitor trials in several different histologies, but these unfortunately have not shown the same outcome as melanoma. There still exists a significant gap to bridge in therapeutic improvement of these therapies, with patient selection still a major unresolved issue.

Advancements in preclinical modeling and tumor and immune cell sequencing technology have had a significant impact on the types of immune-related biomarkers that can be evaluated. These advancements are both a blessing and challenge for clinicians attempting to make sense of rapidly changing landscape of immunotherapy. This is both true in community practice using immunotherapy treatment for their patients and for academic clinicians involved in designing and conducting immunotherapy clinical trials who are essential in developing correlative studies to evaluate potential biomarkers. Here in this chapter, we aim to discuss the immunotherapeutic biomarkers and the overall selection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma W et al (2016) Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 9(1):47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. National cancer institute. http://www.cancer.gov/dictionary?CdrID=45618. 12/28/2016

  4. Paik S et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  PubMed  Google Scholar 

  5. van't Veer LJ, Paik S, Hayes DF (2005) Gene expression profiling of breast cancer: a new tumor marker. J Clin Oncol 23(8):1631–1635

    Article  CAS  PubMed  Google Scholar 

  6. Cohen SJ et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221

    Article  PubMed  Google Scholar 

  7. Cristofanilli M et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  CAS  PubMed  Google Scholar 

  8. Goldkorn A et al (2014) Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J Clin Oncol 32(11):1136–1142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Allegra CJ et al (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27(12):2091–2096

    Article  PubMed  Google Scholar 

  10. Bang YJ et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697

    Article  CAS  PubMed  Google Scholar 

  11. Piccart-Gebhart MJ et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353(16):1659–1672

    Article  CAS  PubMed  Google Scholar 

  12. Romond EH et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684

    Article  CAS  PubMed  Google Scholar 

  13. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10

    Article  CAS  PubMed  Google Scholar 

  14. Ceeraz S, Nowak EC, Noelle RJ (2013) B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 34(11):556–563

    Article  CAS  PubMed  Google Scholar 

  15. Sugamura K, Ishii N, Weinberg AD (2004) Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat Rev Immunol 4(6):420–431

    Article  CAS  PubMed  Google Scholar 

  16. Sharpe AH et al (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8(3):239–245

    Article  CAS  PubMed  Google Scholar 

  17. Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268

    Article  CAS  PubMed  Google Scholar 

  18. Herbst RS, Gordon MS, Fine GD, Sosman JA, Soria J-C, Hamid O, Powderly JD, Burris HA, Mokatrin A, Kowanetz M et al (2013) A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. Journal of Clinical Oncology 31:3000

    Google Scholar 

  19. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ansell SM et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 372(4):311–319

    Article  CAS  PubMed  Google Scholar 

  21. Antonia S et al (2016) Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol 17(3):299–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Barlesi F, Park K, Ciardello J et al (2016) Primary analysis from OAK, a randomized phase III study comparing atezolizumab with docetaxel in 2L/3L NSCLC. in ESMO. Copenhagen

    Google Scholar 

  23. Bellmunt J et al (2017) Pembrolizumab as second-line therapy for advanced Urothelial carcinoma. N Engl J Med 376(11):1015–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Besse B, Johnson M, Jänne P et al (2015) Phase II, single-arm trial (BIRCH) of atezolizumab as first-line or subsequent therapy for locally advanced or metastatic PD-L1- selected non-small cell lung cancer (NSCLC). in European cancer congress 2015. Vienna, Austria: abstract 16LBA

    Google Scholar 

  25. Borghaei H et al (2015) Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639

    Article  CAS  PubMed  Google Scholar 

  26. Brahmer J et al (2015) Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Daud A, Blank CU, Robert C et al (2016) KEYNOTE-006 study of pembrolizumab (pembro) versus ipilimumab (ipi) for advanced melanoma: efficacy by PD-L1 expression and line of therapy. in ASCO. Chicago: J Clin Oncol 34(suppl; abstr 9513)

    Google Scholar 

  28. Garon EB, Herbst RS, Kim D-W et al (2016) Pembrolizumab vs docetaxel for previously treated advanced NSCLC with a PD-L1 tumor proportion score (TPS) 1%-49%: results from KEYNOTE-010. in ASCO. Chicago

    Google Scholar 

  29. Plimack ER, Bellmunt J, Gupta S et al (2015) Pembrolizumab (MK-3475) for advanced urothelial cancer: updated results and biomarker analysis from KEYNOTE-012. in ASCO. Chicago, IL: J Clin Oncol 33(suppl; abstr 4502)

    Google Scholar 

  30. Fehrenbacher L et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846

    Article  CAS  PubMed  Google Scholar 

  31. Garassino MC, Vansteenkiste J, Kim JH et al (2016) Durvalumab in ≥3rd-line locally advanced or metastatic, EGFR/ALK wild-type NSCLC: results from the phase 2 ATLANTIC Study. in IASLC. J Thorac Oncol. Jan 2017

    Google Scholar 

  32. Garon EB et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  33. Hassan R, Thomas A, Patel MR et al (2016) Avelumab (MSB0010718C; anti-PD-L1) in patients with advanced unresectable mesothelioma from the JAVELIN solid tumor phase Ib trial: safety, clinical activity, and PD-L1 expression. in ASCO. Chicago: J Clin Oncol 34(suppl; abstr 8503)

    Google Scholar 

  34. Herbst RS et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387(10027):1540–1550

    Article  CAS  PubMed  Google Scholar 

  35. Herbst RS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bauml J, Seiwert TY, Pfister DG et al (2016) Preliminary results from KEYNOTE-055: pembrolizumab after platinum and cetuximab failure in head and neck squamous cell carcinoma (HNSCC). in ASCO. Chicago: J Clin Oncol 34(suppl; abstr 6011)

    Google Scholar 

  37. Kaufman HL et al (2016) Avelumab in patients with chemotherapy-refractory metastatic merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 17(10):1374–1385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Motzer RJ et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813

    Article  CAS  PubMed  Google Scholar 

  39. Muro K et al (2016) Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol 17(6):717–726

    Article  CAS  PubMed  Google Scholar 

  40. Nanda R et al (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 34(21):2460–2467

    Article  CAS  PubMed  Google Scholar 

  41. Patel MR, Ellerton J, Infante JR et al (2017) Avelumab in patients with metastatic urothelial carcinoma: Pooled results from two cohorts of the phase 1b JAVELIN Solid tumor trial. in ASCO - Genitorurinary Symposium. Orlando, FL: J Clin Oncol 35(suppl 6S; abstract 330)

    Google Scholar 

  42. Reck M et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  43. Reck M, DeGreen H, Rose AL et al (2016) Avelumab (MSB0010718C; anti-PD-L1) vs platinum-based doublet as first-line treatment for metastatic or recurrent PD-L1-positive non-small-cell lung cancer: the phase 3 JAVELIN Lung 100 trial. in ASCO. Chicago: J Clin Oncol 34(suppl; abstr TPS9105)

    Google Scholar 

  44. Ribas A et al (2016) Association of Pembrolizumab with Tumor Response and Survival among Patients with Advanced Melanoma. JAMA 315(15):1600–1609

    Article  CAS  PubMed  Google Scholar 

  45. Rittmeyer A et al (2016) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265

    Article  PubMed  Google Scholar 

  46. Rizvi N, Shepherd F, Antonia S et al (2014) First-line monotherapy with nivolumab (anti-PD-1; BMS-936558, ONO-4538) in advanced non-small cell lung cancer (NSCLC): safety, efficacy and correlation of outcomes with PD-L1 status. in Chicago multidisciplinary symposium in thoracic oncology. Chicago: J Radiat Oncol Biol Phys 90(suppl):S31

    Google Scholar 

  47. Rizvi NA et al (2016) Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 34(25):2969–2979

    Article  PubMed Central  PubMed  Google Scholar 

  48. Rizvi NA et al (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16(3):257–265

    Article  CAS  PubMed  Google Scholar 

  49. Rizvi NA, B.J, Ou SI et al (2015) Safety and clinical activity of MEDI4736, an anti-programmed cell death-ligand 1 (PD-L1) antibody, in patients with non-small cell lung cancer (NSCLC). in ASCO. Chicago: J Clin Oncol 33(suppl; abstr 8032)

    Google Scholar 

  50. Rosenberg JE et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387(10031):1909–1920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Seiwert TY et al (2016) Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 17(7):956–965

    Article  CAS  PubMed  Google Scholar 

  52. Sharma P et al (2016) Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 17(11):1590–1598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Socinski M, Creelan B, Horn L et al (2016) NSCLC, metastaticCheckMate 026: A phase 3 trial of nivolumab vs investigator's choice (IC) of platinum-based doublet chemotherapy (PT-DC) as first-line therapy for stage iv/recurrent programmed death ligand 1 (PD-L1)−positive NSCLC. in ESMO. Copenhagen: Ann Oncol 27 (suppl_6): LBA7_PR

    Google Scholar 

  54. Spigel D, C J, Gettinger S et al (2015) Clinical activity and safety from a phase II study (FIR) of MPDL3280A (anti-PDL1) in PD-L1-selected patients with nonsmall cell lung cancer (NSCLC). in ASCO. J Clin Oncol 33(suppl), abstract 8028

    Google Scholar 

  55. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Weber JS et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384

    Article  CAS  PubMed  Google Scholar 

  57. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551

    Article  CAS  PubMed  Google Scholar 

  58. Chae YK et al (2016) Biomarkers for PD-1/PD-L1 blockade therapy in non-small-cell lung cancer: is PD-L1 expression a good marker for patient selection? Clin Lung Cancer 17(5):350–361

    Article  CAS  PubMed  Google Scholar 

  59. Liu SV, Powderly JD, Camidge DR, et al (2015) Safety and efficacy of MPDL3280A (anti-PDL1) in combination with platinum-based doublet chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). in ASCO. Chicago: J Clin Oncol 33 abstract 8030

    Google Scholar 

  60. Callahan MK, Bendell JC, Chan E, Morse M, Pillai RN, Bono P, Jaeger D, Evans TRJ, Chau I, Calvo E, Le DT, Ott PA, Taylor MH, Sharma P, Antonia SJ, Sharkey B, Christensen O, Amin A (2014) Phase I/II, open-label study of nivolumab (anti-PD-1; BMS- 936558, ONO-4538) as monotherapy or combined with ipilimumab in advanced or metastatic solid tumors. ASCO Meet Abstr 32(15_suppl):TPS3114

    Google Scholar 

  61. Larkin J et al (2015) Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34

    Article  CAS  PubMed  Google Scholar 

  62. Postow MA et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017

    Article  PubMed  Google Scholar 

  63. Robert C et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330

    Article  CAS  PubMed  Google Scholar 

  64. Robert C et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117

    Article  CAS  PubMed  Google Scholar 

  65. Hellmann MD, Gettinger SN, Goldman JW et al (2016) CheckMate 012: safety and efficacy of first-line (1L) nivolumab (nivo; N) and ipilimumab (ipi; I) in advanced (adv) NSCLC. in ASCO. Chicago: J Clin Oncol 34(suppl; abstr 3001)

    Google Scholar 

  66. Green MR et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116(17):3268–3277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Green MR et al (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18(6):1611–1618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Armand P et al (2016) Programmed death-1 blockade with Pembrolizumab in patients with classical Hodgkin Lymphoma after Brentuximab Vedotin Failure. J Clin Oncol 34:3733–3739

    Article  Google Scholar 

  69. Chow LQ et al (2016) Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib keynote-012 expansion cohort. J Clin Oncol 34:3838–3845

    Article  Google Scholar 

  70. Menon S, Shin S, Dy G (2016) Advances in cancer immunotherapy in solid tumors. Cancers (Basel) 8(12)

    Google Scholar 

  71. Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14(4):847–856

    Article  CAS  PubMed  Google Scholar 

  72. Rebelatto M, Mistry A, Sabalos C et al (2015) Development of a PD-L1 companion diagnostic assay for treatment with MEDI4736 in NSCLC and SCCHN patients. in ASCO. Chicago: J Clin Oncol 33(suppl: abstr 8033)

    Google Scholar 

  73. Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19(5):1021–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Chen J et al (2016) Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 27(3):409–416

    Article  CAS  PubMed  Google Scholar 

  75. Callea M, Genega EM, Gupta M, Cheng S, Fay AP, Song J, et al (2014) PD-L1expression in primary clear cell renal cell carcinomas (ccRCCs) and their metastases. in ASCO. Chicago: J Clin Oncol 32: 5s(suppl; abstr 4585)

    Google Scholar 

  76. Hansen AR, Siu LL (2016) PD-L1 testing in cancer: challenges in companion diagnostic development. JAMA Oncol 2(1):15–16

    Article  PubMed  Google Scholar 

  77. Hirsch FR et al (2017) PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the Blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 12(2):208–222

    Article  PubMed  Google Scholar 

  78. Mittal D et al (2014) New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr Opin Immunol 27:16–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Carey LA et al (2016) Molecular heterogeneity and response to neoadjuvant human epidermal growth factor receptor 2 targeting in CALGB 40601, a randomized phase III trial of paclitaxel plus Trastuzumab with or without Lapatinib. J Clin Oncol 34(6):542–549

    Article  CAS  PubMed  Google Scholar 

  80. Denkert C et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105–113

    Article  CAS  PubMed  Google Scholar 

  81. Denkert C et al (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991

    Article  CAS  PubMed  Google Scholar 

  82. Gooden MJ et al (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Ibrahim EM et al (2014) The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat 148(3):467–476

    Article  CAS  PubMed  Google Scholar 

  84. Loi S et al (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550

    Article  CAS  PubMed  Google Scholar 

  85. Loi S et al (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31(7):860–867

    Article  CAS  PubMed  Google Scholar 

  86. Sasada T, Suekane S (2011) Variation of tumor-infiltrating lymphocytes in human cancers: controversy on clinical significance. Immunotherapy 3(10):1235–1251

    Article  CAS  PubMed  Google Scholar 

  87. Schatton T et al (2014) Tumor-infiltrating lymphocytes and their significance in melanoma prognosis. Methods Mol Biol 1102:287–324

    Article  CAS  PubMed  Google Scholar 

  88. Solinas C et al (2017) Tumor infiltrating lymphocytes in gastrointestinal tumors: controversies and future clinical implications. Crit Rev Oncol Hematol 110:106–116

    Article  PubMed  Google Scholar 

  89. Teng F et al (2015) Tumor infiltrating lymphocytes (TILs) before and after neoadjuvant chemoradiotherapy and its clinical utility for rectal cancer. Am J Cancer Res 5(6):2064–2074

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Yu X et al (2016) Prognostic and predictive value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. Clin Transl Oncol 18(5):497–506

    Article  CAS  PubMed  Google Scholar 

  91. Zeng DQ et al (2016) Prognostic and predictive value of tumor-infiltrating lymphocytes for clinical therapeutic research in patients with non-small cell lung cancer. Oncotarget 7(12):13765–13781

    Article  PubMed Central  PubMed  Google Scholar 

  92. Pages F et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666

    Article  CAS  PubMed  Google Scholar 

  93. Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  94. Camus M et al (2009) Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 69(6):2685–2693

    Article  CAS  PubMed  Google Scholar 

  95. Adams S, Robinson DJ, Hamilton EP et al (2016) Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). in ASCO. Chicago: J Clin Oncol 34(suppl; abstr 1009)

    Google Scholar 

  96. Bottai G et al (2016) An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers. Breast Cancer Res 18(1):121

    Article  PubMed Central  PubMed  Google Scholar 

  97. Galon J et al (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1

    Article  PubMed Central  PubMed  Google Scholar 

  98. Fridman WH et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  PubMed  Google Scholar 

  99. Mlecnik B et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(6):610–618

    Article  PubMed  Google Scholar 

  100. Ogino S et al (2011) Cancer immunology--analysis of host and tumor factors for personalized medicine. Nat Rev Clin Oncol 8(12):711–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Laghi L et al (2009) CD3+ cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet Oncol 10(9):877–884

    Article  CAS  PubMed  Google Scholar 

  102. Nosho K et al (2010) Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol 222(4):350–366

    Article  PubMed Central  PubMed  Google Scholar 

  103. Gabrilovich DI et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103

    Article  CAS  PubMed  Google Scholar 

  104. Chomarat P et al (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1(6):510–514

    Article  CAS  PubMed  Google Scholar 

  105. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896

    Article  CAS  PubMed  Google Scholar 

  106. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Zhang J et al (2016) High infiltration of tumor-associated macrophages influences poor prognosis in human gastric cancer patients, associates with the phenomenon of EMT. Medicine (Baltimore) 95(6):e2636

    Article  CAS  Google Scholar 

  108. Mori K et al (2011) Infiltration of m2 tumor-associated macrophages in oral squamous cell carcinoma correlates with tumor malignancy. Cancers (Basel) 3(4):3726–3739

    Article  CAS  Google Scholar 

  109. Shimura S et al (2000) Reduced infiltration of tumor-associated macrophages in human prostate cancer: association with cancer progression. Cancer Res 60(20):5857–5861

    CAS  PubMed  Google Scholar 

  110. Takayama H et al (2009) Increased infiltration of tumor associated macrophages is associated with poor prognosis of bladder carcinoma in situ after intravesical bacillus Calmette-Guerin instillation. J Urol 181(4):1894–1900

    Article  CAS  PubMed  Google Scholar 

  111. Zhang BC et al (2011) Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma. Med Oncol 28(4):1447–1452

    Article  PubMed  Google Scholar 

  112. Zhang Y et al (2013) High-infiltration of tumor-associated macrophages predicts unfavorable clinical outcome for node-negative breast cancer. PLoS One 8(9):e76147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Ma J et al (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Barbera-Guillem E et al (2000) B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother 48(10):541–549

    Article  CAS  PubMed  Google Scholar 

  115. Affara NI et al (2014) B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25(6):809–821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. DiLillo DJ, Yanaba K, Tedder TF (2010) B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J Immunol 184(7):4006–4016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Coca S et al (1997) The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79(12):2320–2328

    Article  CAS  PubMed  Google Scholar 

  118. Ishigami S et al (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88(3):577–583

    Article  CAS  PubMed  Google Scholar 

  119. Villegas FR et al (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35(1):23–28

    Article  PubMed  Google Scholar 

  120. Platonova S et al (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71(16):5412–5422

    Article  CAS  PubMed  Google Scholar 

  121. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Almand B et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166(1):678–689

    Article  CAS  PubMed  Google Scholar 

  123. Shinbrot E et al (2014) Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Res 24(11):1740–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Peltomaki P (2001) Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet 10(7):735–740

    Article  CAS  PubMed  Google Scholar 

  125. Pal T, Permuth-Wey J, Sellers TA (2008) A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer 113(4):733–742

    Article  PubMed Central  PubMed  Google Scholar 

  126. Jang E, Chung DC (2010) Hereditary colon cancer: lynch syndrome. Gut Liver 4(2):151–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Long Q et al (2014) Role of endometrial cancer abnormal MMR protein in screening lynch-syndrome families. Int J Clin Exp Pathol 7(10):7297–7303

    PubMed Central  PubMed  Google Scholar 

  128. Grady WM, Carethers JM (2008) Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135(4):1079–1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. MAFG mediates CIMP in BRAF-mutant colorectal cancer. Cancer Discov 4(11):OF11 (2014)

    Google Scholar 

  130. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337

    Article  CAS  Google Scholar 

  131. Jansen AM et al (2016) Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected lynch syndrome cancers. Eur J Hum Genet 24(7):1089–1092

    Article  CAS  PubMed  Google Scholar 

  132. Benatti P et al (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11(23):8332–8340

    Article  CAS  PubMed  Google Scholar 

  133. Le DT et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. South CD et al (2009) Immunohistochemistry staining for the mismatch repair proteins in the clinical care of patients with colorectal cancer. Genet Med 11(11):812–817

    Article  CAS  PubMed  Google Scholar 

  135. Yamamoto H, Imai K (2015) Microsatellite instability: an update. Arch Toxicol 89(6):899–921

    Article  CAS  PubMed  Google Scholar 

  136. Salipante SJ et al (2014) Microsatellite instability detection by next generation sequencing. Clin Chem 60(9):1192–1199

    Article  CAS  PubMed  Google Scholar 

  137. Huang MN et al (2015) MSIseq: software for assessing microsatellite instability from catalogs of somatic mutations. Sci Rep 5:13321

    Article  CAS  PubMed  Google Scholar 

  138. Hall MJ, Gowen K, Sanford EM, Ali MA, Kaczmar J, Miller VA, Stephens P, Yelensky R, Daly MB, Sun J (2016) Evaluation of microsatellite instability (MSI) status in gastrointestinal (GI) tumor samples tested with comprehensive genomic profiling (CGP). Poster presented at the 51st American Society of Clinical Oncology (ASCO) annual meeting. J Clin Oncol 34(suppl 4S; abstr 528)

    Google Scholar 

  139. Perucho M, Correspondence re: Boland CR et al (1998) A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257. Cancer Res 1999 59(1):249–56

    Google Scholar 

  140. Kim TM, Laird PW, Park PJ (2013) The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 155(4):858–868

    Article  CAS  PubMed  Google Scholar 

  141. Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23(3):609–618

    Article  CAS  PubMed  Google Scholar 

  142. Phillips SM et al (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Surg 91(4):469–475

    Article  CAS  PubMed  Google Scholar 

  143. Meyer LA, Broaddus RR, Lu KH (2009) Endometrial cancer and lynch syndrome: clinical and pathologic considerations. Cancer Control 16(1):14–22

    Article  PubMed Central  PubMed  Google Scholar 

  144. Black D et al (2006) Clinicopathologic significance of defective DNA mismatch repair in endometrial carcinoma. J Clin Oncol 24(11):1745–1753

    Article  CAS  PubMed  Google Scholar 

  145. MacDonald ND et al (2000) Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res 60(6):1750–1752

    CAS  PubMed  Google Scholar 

  146. Fiumicino S et al (2001) Microsatellite instability is an independent indicator of recurrence in sporadic stage I-II endometrial adenocarcinoma. J Clin Oncol 19(4):1008–1014

    Article  CAS  PubMed  Google Scholar 

  147. van der Post RS et al (2010) Risk of urothelial bladder cancer in lynch syndrome is increased, in particular among MSH2 mutation carriers. J Med Genet 47(7):464–470

    Article  PubMed Central  PubMed  Google Scholar 

  148. Risinger JI et al (1995) Microsatellite instability in gynecological sarcomas and in hMSH2 mutant uterine sarcoma cell lines defective in mismatch repair activity. Cancer Res 55(23):5664–5669

    CAS  PubMed  Google Scholar 

  149. Orth K et al (1994) Genetic instability in human ovarian cancer cell lines. Proc Natl Acad Sci U S A 91(20):9495–9499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Kolodner RD et al (1994) Structure of the human MSH2 locus and analysis of two Muir-Torre kindreds for msh2 mutations. Genomics 24(3):516–526

    Article  CAS  PubMed  Google Scholar 

  151. Foley EJ (1953) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13(12):835–837

    CAS  PubMed  Google Scholar 

  152. Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18(6):769–778

    CAS  PubMed  Google Scholar 

  153. Monach PA et al (1995) A unique tumor antigen produced by a single amino acid substitution. Immunity 2(1):45–59

    Article  CAS  PubMed  Google Scholar 

  154. Knuth A et al (1984) T-cell-mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin 2-dependent T-cell cultures. Proc Natl Acad Sci U S A 81(11):3511–3515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Robbins PF et al (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183(3):1185–1192

    Article  CAS  PubMed  Google Scholar 

  156. Boon T et al (1992) Identification of tumour rejection antigens recognized by T lymphocytes. Cancer Surv 13:23–37

    CAS  PubMed  Google Scholar 

  157. Sahin U et al (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A 92(25):11810–11813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Gubin MM et al (2015) Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 125(9):3413–3421

    Article  PubMed Central  PubMed  Google Scholar 

  159. Segal NH et al (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68(3):889–892

    Article  CAS  PubMed  Google Scholar 

  160. van Rooij N et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31(32):e439–e442

    Article  PubMed  Google Scholar 

  161. Rizvi NA et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  164. Roche PA, Furuta K (2015) The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15(4):203–216

    Article  CAS  PubMed  Google Scholar 

  165. Linnemann C et al (2015) High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 21(1):81–85

    Article  CAS  PubMed  Google Scholar 

  166. Tran E et al (2016) T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375(23):2255–2262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Lundegaard C et al (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36(Web Server issue):W509–W512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Frampton GM, Fabrizio D, Chalmers ZR, Ross JS, Johnson DB, Lovly CM, Sosman JA, Miler VA, Stephens P (2016) Assessment of tumor mutation burden from >60,000 clinical cancer patients using comprehensive genomic profiling. Poster presented at the 51st American Society of Clinical Oncology (ASCO) annual meeting. J Clin Oncol 34 (suppl), abstract 11558 Abstract

    Google Scholar 

  170. Hoffman-Censits JH, Grivas P, Van Der Heijden MS, Dreicer R, Loriot Y, Retz M, Vogelzang NJ, Perez-Gracia JL, Rezazadeh A, Bracarda S, Yu EY, Hoimes CJ, Bellmunt J, Quinn DI, Petrylak DP, Hussain SA, Cui N, Mariathasan S, Abidoye OO, Rosenberg JE (2016) IMvigor210, a phase II trial of atezolizumab (MPDL3280A) in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC). Poster presented at the 51st American Society of Clinical Oncology (ASCO) annual meeting. J Clin Oncol (suupl 2S; abstr 355)

    Google Scholar 

  171. Campesato LF et al (2015) Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice. Oncotarget 6(33):34221–34227

    PubMed Central  PubMed  Google Scholar 

  172. George TJ, Michael FG, Sun J, Gowen K, Kennedy M, Greenbowe JR, Schrock AB, Ali SM, Klempner SJ, Hezel AF, Ross JS, Stephens P, Miller VA, Fabrizio D (2016) Tumor mutational burden as a potential biomarker for PD1/PD-L1 in colorectal cancer. Poster presented at the 51st American Society of Clinical Oncology (ASCO) annual meeting. J Clin Oncol 34(suppl). Abstract 3587

    Google Scholar 

  173. Lipinski KA et al (2016) Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer 2(1):49–63

    Article  PubMed Central  PubMed  Google Scholar 

  174. Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109(Suppl):S45–S55

    Article  CAS  PubMed  Google Scholar 

  175. Warren RL et al (2011) Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes. Genome Res 21(5):790–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Li B et al (2016) Landscape of tumor-infiltrating T cell repertoire of human cancers. Nat Genet 48(7):725–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Brown SD, Raeburn LA, Holt RA (2015) Profiling tissue-resident T cell repertoires by RNA sequencing. Genome Med 7:125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Hsu MS et al (2016) TCR sequencing can identify and track Glioma-infiltrating T cells after DC vaccination. Cancer Immunol Res 4(5):412–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Page DB et al (2016) Deep sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy. Cancer Immunol Res 4(10):835–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Byron SA et al (2016) Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 17(5):257–271

    Article  CAS  PubMed  Google Scholar 

  182. Cieslik M et al (2015) The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res 25(9):1372–1381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Gao J et al (2016) Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167(2):397–404. e9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Shin DS et al (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201

    Article  CAS  PubMed  Google Scholar 

  185. Liebner DA, Huang K, Parvin JD (2014) MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics 30(5):682–689

    Article  CAS  PubMed  Google Scholar 

  186. Zhong Y et al (2013) Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinformatics 14:89

    Article  PubMed Central  PubMed  Google Scholar 

  187. Newman AM et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Gentles AJ et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Nowakowski GS, Czuczman MS (2015) ABC, GCB, and double-hit diffuse large B-cell lymphoma: does subtype make a difference in therapy selection? Am Soc Clin Oncol Educ Book:e449–e457

    Google Scholar 

  190. Choi W et al (2014) Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer. Nat Rev Urol 11(7):400–410

    Article  CAS  PubMed  Google Scholar 

  191. Hugo W et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Weber J, Roder H, Asmellash S, Meyer K, Sayers K, Steingrimsson A, Roder J (2016) Abstract 4891: a mass spectrometry-based serum test to predict outcome of treatment with nivolumab: analysis of samples taken during therapy. Cancer Res 76(14 Supplement):4891. doi:10.1158/1538-7445.AM2016-4891

    Article  Google Scholar 

  193. Spranger S, Gajewski TF (2016) Tumor-intrinsic oncogene pathways mediating immune avoidance. Oncoimmunology 5(3):e1086862

    Article  CAS  PubMed  Google Scholar 

  194. Almanzar G et al (2005) Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol 79(6):3675–3683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Sivan A et al (2015) Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  196. Zitvogel L et al (2015) Cancer and the gut microbiota: an unexpected link. Sci Transl Med 7(271):271ps1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Champiat S et al (2016) Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res 23:1920–1928

    Article  CAS  PubMed  Google Scholar 

  198. Hodi FS et al (2016) Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 17(11):1558–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Ferris RL et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Kwang Chae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chae, Y.K., Taxter, T.J., Cavalcante, L.L., Giles, F.J. (2018). Immunotherapeutic Biomarkers and Selection Strategies. In: Patel, S., Kurzrock, R. (eds) Early Phase Cancer Immunotherapy . Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-63757-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63757-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63756-3

  • Online ISBN: 978-3-319-63757-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics