Skip to main content

Primer on Cancer Immunotherapy and the Targeting of Native Proteins

  • Chapter
  • First Online:
  • 995 Accesses

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Immunotherapy has notable potential for achieving durable clinical responses in many cancer types. The ability to readily measure the genomic landscape and infiltrating immune spectra of individual patient tumors offers mechanistic insights for combination therapy selection. Immunotherapeutic approaches through immune checkpoint blockade or stimulation, immune cell therapies, as well as tumor vaccination are being studied as mono and combination therapy in multiple cancer types. Uniquely, many immunotherapies target “native” self-proteins and thus herald a paradigm shift in cancer management in which the drug target is no longer an oncogenic protein but rather a normal signal that impacts the interactions of myriad immune cell types with both cancerous and normal cells. Native proteins in immunology are found in multiple isoforms with distinct interaction partners and at heterotypic transient cellular interfaces. Methods for evaluating the presence and function of native proteins for therapeutic targeting necessitates resolving for tumor–immune cellular interactions to understand which cell type is expressing which native protein isoform in the contextual (variably inflamed) tumor microenvironment. Just as tumor genomics has facilitated the selection of targeted therapies, precision immuno-oncology necessitates a comprehensive understanding of the immune system and the native proteins that govern its coordinated behavior. This primer on the relevant immunobiology, its clinical assessment, and therapeutic implications establishes a framework for conceptualizing the clinical advances in cancer immunotherapy that are the focus of this volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dvorak HF (2015) Tumors: wounds that do not heal-redux. Cancer Immunol Res 3(1):1–11. doi:10.1158/2326-6066.CIR-14-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B, Nowak MA (2010) Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci U S A 107(43):18545–18550. doi:10.1073/pnas.1010978107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274. doi:10.1126/science.1133427

    Article  PubMed  CAS  Google Scholar 

  5. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545. doi:10.1016/S0140-6736(00)04046-0

    Article  CAS  PubMed  Google Scholar 

  6. Burnet M (1957) Cancer; a biological approach. I. The processes of control. Br Med J 1(5022):779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lawrence HS (1959) Cellular and humoral aspects of the hypersensitive states; a symposium held at the New York Academy of Medicine. In: Symposia of the section on microbiology, the New York Academy of Medicine, vol 9. P.B. Hoeber, New York

    Google Scholar 

  8. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331(6024):1565–1570. doi:10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  9. Mackay LK, Kallies A (2017) Transcriptional regulation of tissue-resident lymphocytes. Trends Immunol 38(2):94–103. doi:10.1016/j.it.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  10. Cramer DW, Vitonis AF, Pinheiro SP, McKolanis JR, Fichorova RN, Brown KE, Hatchette TF, Finn OJ (2010) Mumps and ovarian cancer: modern interpretation of an historic association. Cancer Causes Control 21(8):1193–1201. doi:10.1007/s10552-010-9546-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022. doi:10.1038/ni.2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, Sallusto F, Shen-Orr SS, Lanzavecchia A, Mann M, Meissner F (2017) Social network architecture of human immune cells unveiled by quantitative proteomics. Nat Immunol. doi:10.1038/ni.3693

  13. Heng TS, Painter MW, Immunological Genome Project C (2008) The immunological genome project: networks of gene expression in immune cells. Nat Immunol 9(10):1091–1094. doi:10.1038/ni1008-1091

    Article  CAS  PubMed  Google Scholar 

  14. Schreibelt G, Tel J, Sliepen KH, Benitez-Ribas D, Figdor CG, Adema GJ, de Vries IJ (2010) Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol Immunother 59(10):1573–1582. doi:10.1007/s00262-010-0833-1

    Article  CAS  PubMed  Google Scholar 

  15. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laoui D, Van Overmeire E, De Baetselier P, Van Ginderachter JA, Raes G (2014) Functional relationship between tumor-associated macrophages and macrophage colony-stimulating factor as contributors to cancer progression. Front Immunol 5:489. doi:10.3389/fimmu.2014.00489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wesolowski R, Markowitz J, Carson WE 3rd (2013) Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10. doi:10.1186/2051-1426-1-10

    Article  PubMed  PubMed Central  Google Scholar 

  18. Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43(3):435–449. doi:10.1016/j.immuni.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  19. Trowsdale J, Knight JC (2013) Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 14:301–323. doi:10.1146/annurev-genom-091212-153455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang JY, Sarwal MM (2017) Transplant genetics and genomics. Nat Rev Genet doi:10.1038/nrg.2017.12

  21. Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. doi:10.1038/nature15393

    Article  CAS  Google Scholar 

  22. Dahlberg CI, Sarhan D, Chrobok M, Duru AD, Alici E (2015) Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front Immunol 6:605. doi:10.3389/fimmu.2015.00605

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lavin Y, Mortha A, Rahman A, Merad M (2015) Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 15(12):731–744. doi:10.1038/nri3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302(5909):575–581

    Article  CAS  PubMed  Google Scholar 

  26. Stevanovic S, Schild H (1999) Quantitative aspects of T cell activation--peptide generation and editing by MHC class I molecules. Semin Immunol 11(6):375–384. doi:10.1006/smim.1999.0195

    Article  CAS  PubMed  Google Scholar 

  27. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, Riddell SR, Warren EH, Carlson CS (2009) Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114(19):4099–4107. doi:10.1182/blood-2009-04-217604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ, Tan MP, Dolton G, Clement M, Llewellyn-Lacey S, Price DA, Peakman M, Sewell AK (2012) A single autoimmune T cell receptor recognizes more than a million different peptides. J Biol Chem 287(2):1168–1177. doi:10.1074/jbc.M111.289488

    Article  CAS  PubMed  Google Scholar 

  29. Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 14(6):377–391. doi:10.1038/nri3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tussiwand R, Bosco N, Ceredig R, Rolink AG (2009) Tolerance checkpoints in B-cell development: Johnny B good. Eur J Immunol 39(9):2317–2324. doi:10.1002/eji.200939633

    Article  CAS  PubMed  Google Scholar 

  31. Yatim N, Cullen S, Albert ML (2017) Dying cells actively regulate adaptive immune responses. Nat Rev Immunol doi:10.1038/nri.2017.9

  32. Srinivasan R, Wolchok JD (2004) Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines. J Transl Med 2(1):12. doi:10.1186/1479-5876-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB (1987) T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol 7(12):4472–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaech SM, Cui W (2012) Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol 12(11):749–761. doi:10.1038/nri3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182(2):459–465

    Article  CAS  PubMed  Google Scholar 

  37. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206(8):1717–1725. doi:10.1084/jem.20082492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375(18):1767–1778. doi:10.1056/NEJMra1514296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    Article  CAS  PubMed  Google Scholar 

  40. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. doi:10.1016/j.immuni.2013.07.012

    Article  PubMed  CAS  Google Scholar 

  41. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330. doi:10.1038/nature21349

    Article  CAS  PubMed  Google Scholar 

  42. Palucka AK, Coussens LM (2016) The basis of oncoimmunology. Cell 164(6):1233–1247. doi:10.1016/j.cell.2016.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blank CU, Haanen JB, Ribas A, Schumacher TN (2016) CANCER IMMUNOLOGY. The “cancer immunogram”. Science 352(6286):658–660. doi:10.1126/science.aaf2834

    Article  CAS  PubMed  Google Scholar 

  44. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214. doi:10.1016/j.cell.2015.03.030

    Article  CAS  PubMed  Google Scholar 

  45. Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8(328):328rv324. doi:10.1126/scitranslmed.aad7118

    Article  CAS  Google Scholar 

  46. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461. doi:10.1016/j.ccell.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964. doi:10.1126/science.1129139

    Article  CAS  PubMed  Google Scholar 

  48. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567. doi:10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. doi:10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Masucci GV, Botti G, Tatangelo F, Delrio P, Maio M, Laghi L, Grizzi F, Asslaber M, D'Arrigo C, Vidal-Vanaclocha F, Zavadova E, Chouchane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scripcariu V, Ascierto PA, Marincola FM, Fox BA, Pages F (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232(2):199–209. doi:10.1002/path.4287

    Article  CAS  PubMed  Google Scholar 

  51. Schneider G, Schmidt-Supprian M, Rad R, Saur D (2017) Tissue-specific tumorigenesis: context matters. Nat Rev Cancer 17(4):239–253. doi:10.1038/nrc.2017.5

    Article  CAS  PubMed  Google Scholar 

  52. Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria JC, Postel-Vinay S (2016) Mutational landscape and sensitivity to immune checkpoint blockers. Clin Cancer Res 22(17):4309–4321. doi:10.1158/1078-0432.CCR-16-0903

    Article  CAS  PubMed  Google Scholar 

  53. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945. doi:10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-Cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262. doi:10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  55. Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15(11):669–682. doi:10.1038/nri3902

    Article  CAS  PubMed  Google Scholar 

  56. Anderson KG, Stromnes IM, Greenberg PD (2017) Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31(3):311–325. doi:10.1016/j.ccell.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  57. Zhao X, Subramanian S (2017) Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res 77(4):817–822. doi:10.1158/0008-5472.CAN-16-2379

    Article  CAS  PubMed  Google Scholar 

  58. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, Zitvogel L (2016) Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44(6):1255–1269. doi:10.1016/j.immuni.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  59. Pickup M, Novitskiy S, Moses HL (2013) The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer 13(11):788–799. doi:10.1038/nrc3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. doi:10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  61. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, Hruban C, Guthrie VB, Rodgers K, Naidoo J, Kang H, Sharfman WH, Georgiades C, Verde F, Illei P, Li QK, Gabrielson E, Brock MV, Zahnow CA, Baylin SB, Scharpf R, Brahmer JR, Karchin R, Pardoll DM, Velculescu VE (2016) Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov doi:10.1158/2159-8290.CD-16-0828

  62. Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, Stevens J, Lane WJ, Dellagatta JL, Steelman S, Sougnez C, Cibulskis K, Kiezun A, Hacohen N, Brusic V, Wu CJ, Getz G (2015) Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol 33(11):1152–1158. doi:10.1038/nbt.3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, Saco J, Homet Moreno B, Mezzadra R, Chmielowski B, Ruchalski K, Shintaku IP, Sanchez PJ, Puig-Saus C, Cherry G, Seja E, Kong X, Pang J, Berent-Maoz B, Comin-Anduix B, Graeber TG, Tumeh PC, Schumacher TN, Lo RS, Ribas A (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829. doi:10.1056/NEJMoa1604958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, Jones RE, Kulkarni MM, Kuraguchi M, Palakurthi S, Fecci PE, Johnson BE, Janne PA, Engelman JA, Gangadharan SP, Costa DB, Freeman GJ, Bueno R, Hodi FS, Dranoff G, Wong KK, Hammerman PS (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501. doi:10.1038/ncomms10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4):670–691. doi:10.1016/j.cell.2016.11.037

    Article  CAS  PubMed  Google Scholar 

  66. Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86. doi:10.1038/nri3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Woo SR, Corrales L, Gajewski TF (2015) The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol 36(4):250–256. doi:10.1016/j.it.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Halama N, Spille A, Lerchl T, Brand K, Herpel E, Welte S, Keim S, Lahrmann B, Klupp F, Kahlert C, Weitz J, Grabe N, Jaeger D, Zoernig I (2013) Hepatic metastases of colorectal cancer are rather homogeneous but differ from primary lesions in terms of immune cell infiltration. Oncoimmunology 2(4):e24116. doi:10.4161/onci.24116

    Article  PubMed  PubMed Central  Google Scholar 

  69. Maio M, Covre A, Fratta E, Di Giacomo AM, Taverna P, Natali PG, Coral S, Sigalotti L (2015) Molecular pathways: at the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res 21(18):4040–4047. doi:10.1158/1078-0432.CCR-14-2914

    Article  CAS  PubMed  Google Scholar 

  70. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, Chen L (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127ra137. doi:10.1126/scitranslmed.3003689

    Article  CAS  Google Scholar 

  71. Minn AJ, Wherry EJ (2016) Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165(2):272–275. doi:10.1016/j.cell.2016.03.031

    Article  CAS  PubMed  Google Scholar 

  72. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO, Jackson JR, Shahabi V (2012) An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61(7):1019–1031. doi:10.1007/s00262-011-1172-6

    Article  CAS  PubMed  Google Scholar 

  73. Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer 16(3):131–144. doi:10.1038/nrc.2016.14

    Article  PubMed  CAS  Google Scholar 

  74. Wong MT, Ong DE, Lim FS, Teng KW, McGovern N, Narayanan S, Ho WQ, Cerny D, Tan HK, Anicete R, Tan BK, Lim TK, Chan CY, Cheow PC, Lee SY, Takano A, Tan EH, Tam JK, Tan EY, Chan JK, Fink K, Bertoletti A, Ginhoux F, Curotto de Lafaille MA, Newell EW (2016) A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45(2):442–456. doi:10.1016/j.immuni.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  75. Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ (2014) HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol Res 2(6):522–529. doi:10.1158/2326-6066.CIR-13-0227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kinzler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eshleman JR, Vogelstein B, Diaz LA Jr (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520. doi:10.1056/NEJMoa1500596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Angelova M, Charoentong P, Hackl H, Fischer ML, Snajder R, Krogsdam AM, Waldner MJ, Bindea G, Mlecnik B, Galon J, Trajanoski Z (2015) Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol 16:64. doi:10.1186/s13059-015-0620-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome I, Consortium IBC, Consortium IM-S, PedBrain I, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. doi:10.1038/nature12477

  79. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505(7484):495–501. doi:10.1038/nature12912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199. doi:10.1056/NEJMoa1406498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Geukes Foppen MH, Goldinger SM, Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schadendorf D, Garraway LA (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211. doi:10.1126/science.aad0095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128. doi:10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moloney FJ, Comber H, O'Lorcain P, O'Kelly P, Conlon PJ, Murphy GM (2006) A population-based study of skin cancer incidence and prevalence in renal transplant recipients. Br J Dermatol 154(3):498–504. doi:10.1111/j.1365-2133.2005.07021.x

    Article  CAS  PubMed  Google Scholar 

  84. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16(5):275–287. doi:10.1038/nrc.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu XS, Mardis ER (2017) Applications of immunogenomics to cancer. Cell 168(4):600–612. doi:10.1016/j.cell.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  86. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58(16):3491–3494

    CAS  PubMed  Google Scholar 

  87. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. doi:10.1056/NEJMoa020177

    Article  CAS  PubMed  Google Scholar 

  88. Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17(4):209–222. doi:10.1038/nrc.2016.154

    Article  CAS  PubMed  Google Scholar 

  89. Hyman DM, Taylor BS, Baselga J (2017) Implementing genome-driven oncology. Cell 168(4):584–599. doi:10.1016/j.cell.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  90. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, Griffith M (2016) pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med 8(1):11. doi:10.1186/s13073-016-0264-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill JR, Delamarre L (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576. doi:10.1038/nature14001

    Article  CAS  PubMed  Google Scholar 

  92. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-McGowan K, Wunderlich JR, Yang JC, Rosenberg SA (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438. doi:10.1038/nm.4051

    Article  CAS  PubMed  Google Scholar 

  93. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. doi:10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aran D, Butte AJ (2016) Digitally deconvolving the tumor microenvironment. Genome Biol 17(1):175. doi:10.1186/s13059-016-1036-7

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hackl H, Charoentong P, Finotello F, Trajanoski Z (2016) Computational genomics tools for dissecting tumour-immune cell interactions. Nat Rev Genet 17(8):441–458. doi:10.1038/nrg.2016.67

    Article  CAS  PubMed  Google Scholar 

  96. Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ (2012) Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37(6):1130–1144. doi:10.1016/j.immuni.2012.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, Bikoff EK, Robertson EJ, Lauer GM, Reiner SL, Wherry EJ (2012) Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338(6111):1220–1225. doi:10.1126/science.1229620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27(4):670–684. doi:10.1016/j.immuni.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  99. Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33(31):3541–3543. doi:10.1200/JCO.2015.61.6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, Lin NU, Litiere S, Dancey J, Chen A, Hodi FS, Therasse P, Hoekstra OS, Shankar LK, Wolchok JD, Ballinger M, Caramella C, de Vries EG, Recist Working Group (2017) iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol 18(3):e143–e152. doi:10.1016/S1470-2045(17)30074-8

    Article  PubMed  PubMed Central  Google Scholar 

  101. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168(4):613–628. doi:10.1016/j.cell.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  102. Tavare R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, Witte ON, Ribas A, Wu AM (2016) An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res 76(1):73–82. doi:10.1158/0008-5472.CAN-15-1707

    Article  CAS  PubMed  Google Scholar 

  103. Kohrt HE, Tumeh PC, Benson D, Bhardwaj N, Brody J, Formenti S, Fox BA, Galon J, June CH, Kalos M, Kirsch I, Kleen T, Kroemer G, Lanier L, Levy R, Lyerly HK, Maecker H, Marabelle A, Melenhorst J, Miller J, Melero I, Odunsi K, Palucka K, Peoples G, Ribas A, Robins H, Robinson W, Serafini T, Sondel P, Vivier E, Weber J, Wolchok J, Zitvogel L, Disis ML, Cheever MA, Cancer Immunotherapy Trials N (2016) Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. J Immunother Cancer 4:15. doi:10.1186/s40425-016-0118-0

    Article  PubMed  PubMed Central  Google Scholar 

  104. Masucci GV, Cesano A, Hawtin R, Janetzki S, Zhang J, Kirsch I, Dobbin KK, Alvarez J, Robbins PB, Selvan SR, Streicher HZ, Butterfield LH, Thurin M (2016) Validation of biomarkers to predict response to immunotherapy in cancer: volume I – pre-analytical and analytical validation. J Immunother Cancer 4:76. doi:10.1186/s40425-016-0178-1

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schwaederle M, Husain H, Fanta PT, Piccioni DE, Kesari S, Schwab RB, Patel SP, Harismendy O, Ikeda M, Parker BA, Kurzrock R (2016) Use of liquid biopsies in clinical oncology: pilot experience in 168 patients. Clin Cancer Res doi:10.1158/1078-0432.CCR-16-0318

  106. Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, Callahan M, Wolchok JD, Halaban R, Dhodapkar MV, Dhodapkar KM (2015) Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol 194(3):950–959. doi:10.4049/jimmunol.1401686

    Article  CAS  PubMed  Google Scholar 

  107. Weide B, Di Giacomo AM, Fonsatti E, Zitvogel L (2015) Immunologic correlates in the course of treatment with immunomodulating antibodies. Semin Oncol 42(3):448–458. doi:10.1053/j.seminoncol.2015.02.016

    Article  CAS  PubMed  Google Scholar 

  108. Maude SL, Barrett D, Teachey DT, Grupp SA (2014) Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 20(2):119–122. doi:10.1097/PPO.0000000000000035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang S, Charbonnier LM, Noval Rivas M, Georgiev P, Li N, Gerber G, Bry L, Chatila TA (2015) MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43(2):289–303. doi:10.1016/j.immuni.2015.06.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Telesford KM, Yan W, Ochoa-Reparaz J, Pant A, Kircher C, Christy MA, Begum-Haque S, Kasper DL, Kasper LH (2015) A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes 6(4):234–242. doi:10.1080/19490976.2015.1056973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089. doi:10.1126/science.aac4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hegde PS, Karanikas V, Evers S (2016) The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res 22(8):1865–1874. doi:10.1158/1078-0432.CCR-15-1507

    Article  CAS  PubMed  Google Scholar 

  113. Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17(4):223–238. doi:10.1038/nrc.2017.7

    Article  CAS  PubMed  Google Scholar 

  114. Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD (2017) Combination immunotherapy: a road map. J Immunother Cancer 5:16. doi:10.1186/s40425-017-0218-5

    Article  PubMed  PubMed Central  Google Scholar 

  115. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33(17):1974–1982. doi:10.1200/JCO.2014.59.4358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lim WA, June CH (2017) The principles of engineering immune cells to treat cancer. Cell 168(4):724–740. doi:10.1016/j.cell.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  117. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28(6):690–714. doi:10.1016/j.ccell.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  118. Schadt EE, Bjorkegren JL (2012) NEW: network-enabled wisdom in biology, medicine, and health care. Sci Transl Med 4(115):115rv111. doi:10.1126/scitranslmed.3002132

    Article  CAS  Google Scholar 

  119. Demaria S, Coleman CN, Formenti SC (2016) Radiotherapy: changing the game in immunotherapy. Trends Cancer 2(6):286–294. doi:10.1016/j.trecan.2016.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kline J, Brown IE, Zha YY, Blank C, Strickler J, Wouters H, Zhang L, Gajewski TF (2008) Homeostatic proliferation plus regulatory T-cell depletion promotes potent rejection of B16 melanoma. Clin Cancer Res 14(10):3156–3167. doi:10.1158/1078-0432.CCR-07-4696

    Article  CAS  PubMed  Google Scholar 

  121. Ebert PJ, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M, Gould SE, Maecker H, Irving BA, Kim JM, Belvin M, Mellman I (2016) MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44(3):609–621. doi:10.1016/j.immuni.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  122. Beers SA, Glennie MJ, White AL (2016) Influence of immunoglobulin isotype on therapeutic antibody function. Blood 127(9):1097–1101. doi:10.1182/blood-2015-09-625343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zitvogel L, Galluzzi L, Viaud S, Vetizou M, Daillere R, Merad M, Kroemer G (2015) Cancer and the gut microbiota: an unexpected link. Sci Transl Med 7(271):271ps271. doi:10.1126/scitranslmed.3010473

    Article  CAS  Google Scholar 

  124. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084. doi:10.1126/science.aad1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Melero I, Berman DM, Aznar MA, Korman AJ, Perez Gracia JL, Haanen J (2015) Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 15(8):457–472. doi:10.1038/nrc3973

    Article  CAS  PubMed  Google Scholar 

  126. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, Gopalakrishnan V, Wang F, Cooper ZA, Reddy SM, Gumbs C, Little L, Chang Q, Chen WS, Wani K, De Macedo MP, Chen E, Austin-Breneman JL, Jiang H, Roszik J, Tetzlaff MT, Davies MA, Gershenwald JE, Tawbi H, Lazar AJ, Hwu P, Hwu WJ, Diab A, Glitza IC, Patel SP, Woodman SE, Amaria RN, Prieto VG, Hu J, Sharma P, Allison JP, Chin L, Zhang J, Wargo JA, Futreal PA (2017) Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9 (379). doi:10.1126/scitranslmed.aah3560

  127. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723. doi:10.1016/j.cell.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  128. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. doi:10.1146/annurev-immunol-031210-101324

    Article  CAS  PubMed  Google Scholar 

  129. Morrissey KM, Yuraszeck TM, Li CC, Zhang Y, Kasichayanula S (2016) Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin Transl Sci 9(2):89–104. doi:10.1111/cts.12391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Spranger S, Gajewski T (2013) Rational combinations of immunotherapeutics that target discrete pathways. J Immunother Cancer 1:16. doi:10.1186/2051-1426-1-16

    Article  PubMed  PubMed Central  Google Scholar 

  131. Liu L, Mayes PA, Eastman S, Shi H, Yadavilli S, Zhang T, Yang J, Seestaller-Wehr L, Zhang SY, Hopson C, Tsvetkov L, Jing J, Zhang S, Smothers J, Hoos A (2015) The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin Cancer Res 21(7):1639–1651. doi:10.1158/1078-0432.CCR-14-2339

    Article  CAS  PubMed  Google Scholar 

  132. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13(5):273–290. doi:10.1038/nrclinonc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Barsan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barsan, V., Tumeh, P.C. (2018). Primer on Cancer Immunotherapy and the Targeting of Native Proteins. In: Patel, S., Kurzrock, R. (eds) Early Phase Cancer Immunotherapy . Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-63757-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63757-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63756-3

  • Online ISBN: 978-3-319-63757-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics