Skip to main content

A Study of Action Recognition Problems: Dataset and Architectures Perspectives

  • Chapter
  • First Online:
Advances in Soft Computing and Machine Learning in Image Processing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 730))

Abstract

Action recognition field has recently grown dramatically due to its importance in many applications like smart surveillance, human–computer interaction, assisting aged citizens or web-video search and retrieval. Many research trials have tackled action recognition as an open problem. Different datasets are built to evaluate architectures variations. In this survey, different action recognition datasets are explored to highlight their ability to evaluate different models. In addition, for each dataset, a usage is proposed based on the content and format of data it includes, the number of classes and challenges it covers. On other hand, another exploration for different architectures is drawn showing the contribution of each of them to handle different action recognition problem challenges and the scientific explanation behind their results. An overall of 21 datasets is covered with 13 architectures that are shallow and deep models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shao, L., Jones, S., Li, X.: Efficient search and localization of human actions in video databases. IEEE Trans. Circuits Syst. Video Technol. 24(3), 504–512 (2014)

    Article  Google Scholar 

  2. Wang, F., Xu, D., Lu, W., Xu, H.: Automatic annotation and retrieval for videos. In: Pacific-Rim Symposium on Image and Video Technology, pp. 1030–1040. Springer, Heidelberg (2006)

    Google Scholar 

  3. Hung, M.H., Pan, J.S.: A real-time action detection system for surveillance videos using template matching. J. Inf. Hiding Multimedia Signal Process. 6(6), 1088–1099 (2015)

    Google Scholar 

  4. Campo, E., Chan, M.: Detecting abnormal behaviour by real-time monitoring of patients. In: Proceedings of the AAAI-02 Workshop Automation as Caregiver, pp. 8–12 (2002)

    Google Scholar 

  5. Mumtaz, M., Habib, H. A.: Evaluation of Activity Recognition Algorithms for Employee Performance Monitoring. Int. J. Comput. Sci. Issues (IJCSI), 9(5), 203–210 (2012)

    Google Scholar 

  6. Regneri, M., Rohrbach, M., Wetzel, D., Thater, S., Schiele, B., Pinkal, M.: Grounding action descriptions in videos. Trans. Assoc. Comput. Linguist. 1, 25–36 (2013)

    Google Scholar 

  7. Guo, G., Lai, A.: A survey on still image based human action recognition. Pattern Recogn. 47(10), 3343–3361 (2014)

    Article  Google Scholar 

  8. Rodriguez, M.: Spatio-temporal maximum average correlation height templates in action recognition and video summarization (2010)

    Google Scholar 

  9. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2929–2936. IEEE (2009)

    Google Scholar 

  10. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  11. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 32–36. IEEE (2004)

    Google Scholar 

  12. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos “in the wild”. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1996–2003. IEEE (2009)

    Google Scholar 

  13. Reddy, K.K., Shah, M.: Recognizing 50 human action categories of web videos. Mach. Vis. Appl. 24(5), 971–981 (2013)

    Article  Google Scholar 

  14. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions classes from videos in the wild (2012). arXiv:1212.0402

  15. Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene and object recognition. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  16. Jhuang, H., et al.: Towards understanding action recognition. In: Proceedings of the IEEE International Conference on Computer Vision (2013)

    Google Scholar 

  17. Rohrbach, M., Amin, S., Andriluka, M., Schiele, B.: A database for fine grained activity detection of cooking activities. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1194–1201. IEEE (2012)

    Google Scholar 

  18. http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/. Accessed 29 Jan 2013

  19. Escalera, S., Gonzàlez, J., Baró, X., Reyes, M., Lopes, O., Guyon, I., Escalante, H.: Multi-modal gesture recognition challenge 2013: dataset and results. In: Proceedings of the 15th ACM on International Conference on Multimodal Interaction, pp. 445–452. ACM (2013)

    Google Scholar 

  20. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale Video Classification with Convolutional Neural Networks (2014)

    Google Scholar 

  21. Badler, N. I., O’Rourke, J., Platt, S., Morris, M. A.: Human movement understanding: a variety of perspectives. In: AAAI, pp. 53–55 (1980)

    Google Scholar 

  22. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (pp. 65–72). IEEE (2005)

    Google Scholar 

  23. Klaser, A., Marszałek, M., Schmid, C. A spatio-temporal descriptor based on 3d-gradients. In: BMVC 2008–19th British Machine Vision Conference, pp. 275–1. British Machine Vision Association (2008)

    Google Scholar 

  24. Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: European Conference on Computer Vision, pp. 650–663. Springer, Heidelberg (2008)

    Google Scholar 

  25. Wang, H., Ullah, M. M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: BMVC 2009-British Machine Vision Conference, pp. 124–1. BMVA Press (2009)

    Google Scholar 

  26. Peng, X., Wang, L., Wang, X., Qiao, Y.: Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. Comput. Vis. Image Underst. (2016).

    Google Scholar 

  27. Dodge, S. F., Karam, L.J.: Is Bottom-Up Attention Useful for Scene Recognition? (2013). arXiv:1307.5702

  28. Peng, X., Zou, C., Qiao, Y., Peng, Q.: Action recognition with stacked fisher vectors. In: European Conference on Computer Vision, pp. 581–595. Springer International Publishing (2014)

    Google Scholar 

  29. Fernando, B., Gavves, E., Oramas, J., Ghodrati, A., Tuytelaars, T.: Rank pooling for action recognition (2016)

    Google Scholar 

  30. Wang, L., Qiao, Y., Tang, X. Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4305–4314 (2015)

    Google Scholar 

  31. Bottou, L., Vapnik, V.: Local learning algorithms. Neural Comput. 4(6), 888–900 (1992)

    Article  Google Scholar 

  32. Strasburger, H., Rentschler, I., Jüttner, M.: Peripheral vision and pattern recognition: a review. J. Vis. 11(5), 13–13 (2011)

    Google Scholar 

  33. Ni, B., Paramathayalan, V.R., Moulin, P.: Multiple granularity analysis for fine-grained action detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 756–763 (2014)

    Google Scholar 

  34. Freedman, R.G., Jung, H.T., Zilberstein, S.: Plan and activity recognition from a topic modeling perspective. In: ICAPS (2014)

    Google Scholar 

  35. Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., Poggio, T.: A quantitative theory of immediate visual recognition. Prog. Brain Res. 165, 33–56 (2007)

    Article  Google Scholar 

  36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  37. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  38. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  39. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: Deep networks for video classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4694–4702 (2015)

    Google Scholar 

  40. Yao, L., Torabi, A., Cho, K., Ballas, N., Pal, C., Larochelle, H., Courville, A.: Describing videos by exploiting temporal structure. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4507–4515 (2015)

    Google Scholar 

  41. Salakhutdinov, R., Hinton, G.E.: Deep boltzmann machines. In: AISTATS, vol. 1, p. 3 (2009)

    Google Scholar 

  42. Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-temporal features. In: European Conference on Computer Vision, pp. 140–153. Springer, Heidelberg (2010)

    Google Scholar 

  43. Le, Q. V.: Building high-level features using large scale unsupervised learning. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing pp. 8595–8598 (2013)

    Google Scholar 

  44. Sun, L., Jia, K., Chan, T.H., Fang, Y., Wang, G., Yan, S.: DL-SFA: deeply-learned slow feature analysis for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2632 (2014)

    Google Scholar 

  45. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. pp. 248–255. IEEE (2009)

    Google Scholar 

  46. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Berg, A.C.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Google Scholar 

  47. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments, vol. 1, no. 2, p. 3, Technical Report 07-49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  48. Zhang, W., Sun, J., Tang, X.: Cat head detection-how to effectively exploit shape and texture features. In: European Conference on Computer Vision, pp. 802–816. Springer, Heidelberg (2008)

    Google Scholar 

  49. Keller, C. G., Enzweiler, M., Gavrila, D. M.: A new benchmark for stereo-based pedestrian detection. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 691–696. IEEE (2011)

    Google Scholar 

  50. Chen, D.L., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 190–200. Association for Computational Linguistics (2011)

    Google Scholar 

  51. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)

    Google Scholar 

  52. Denkowski, M., Lavie, A.: Meteor universal: Language specific translation evaluation for any target language. In: Proceedings of the Ninth Workshop on Statistical Machine Translation (2014)

    Google Scholar 

  53. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)

    Google Scholar 

  54. Torabi, A., Pal, C., Larochelle, H., Courville, A.: Using descriptive video services to create a large data source for video annotation research (2015). arXiv:1503.01070

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassel S. Chawky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chawky, B.S., Elons, A.S., Ali, A., Shedeed, H.A. (2018). A Study of Action Recognition Problems: Dataset and Architectures Perspectives. In: Hassanien, A., Oliva, D. (eds) Advances in Soft Computing and Machine Learning in Image Processing. Studies in Computational Intelligence, vol 730. Springer, Cham. https://doi.org/10.1007/978-3-319-63754-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63754-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63753-2

  • Online ISBN: 978-3-319-63754-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics