Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 362 Accesses

Abstract

We solve the Klein-Gordon equation for a scalar field, in the background geometry of a dust cloud collapsing to form a black hole in the (1+1) spacetime. This has been performed both inside and outside the event horizon and arbitrarily close to the curvature singularity. This allows us to determine the expectation value of regularized stress tensor, everywhere in the appropriate quantum state (viz., the Unruh vacuum) of the field. Using this expectation value we have studied the behaviour of energy density and flux measured by both static and radially freely falling observers at any given event. Outside the black hole, energy density and flux lead to the standard results expected from the Hawking radiation. While inside the collapsing dust ball, the energy densities of both matter and scalar field diverge near the singularity in both (1+1) and (1+3) spacetime dimensions. Intriguingly the energy density of the field dominates over that of classical matter. These results suggest that the back-reaction effects are significant in the region close to the singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Hawking, Black hole explosions. Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  2. S. Hawking, Particle creation by Black Holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. Birrell, P. Davies, Quantum Fields in Curved Space (Cambridge Monogr. Math, Phys, 1982)

    Google Scholar 

  4. T. Padmanabhan, Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49–125 (2005). arXiv:gr-qc/0311036 [gr-qc]

  5. T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rept. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

  6. A.D. Helfer, Do black holes radiate? Rept. Prog. Phys. 66, 43–1008 (2003). arXiv:gr-qc/0304042 [gr-qc]

  7. A. Fabbri, J. Navarro-Salas, Modeling Black Hole Evaporation (2005)

    Google Scholar 

  8. V. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity, 1st edn (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  9. L.E. Parker, D. Toms, Quantum Field Theory in Curved Spacetime. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2009), http://www.cambridge.org/de/knowledge/isbn/item2327457

  10. T. Padmanabhan, Gravitation: Foundations and Frontiers (Cambridge University Press, Cambridge, UK, 2010)

    Book  MATH  Google Scholar 

  11. M. Visser, Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D 12, 649–661 (2003). arXiv:hep-th/0106111 [hep-th]

  12. S. Takagi, Vacuum noise and stress induced by uniform accelerator: Hawking-Unruh effect in Rindler manifold of arbitrary dimensions. Prog. Theor. Phys. Suppl. 88, 1–142 (1986)

    Article  ADS  Google Scholar 

  13. G. Acquaviva, G.F.R. Ellis, R. Goswami, A.I.M. Hamid, Constructing black hole entropy from gravitational collapse. Phys. Rev. D 91(6), 064017 (2015). arXiv:1411.5708 [gr-qc]

  14. M. Wielgus, M.A. Abramowicz, G.F.R. Ellis, F.H. Vincent, Cosmic background radiation in the vicinity of a Schwarzschild black hole: no classic firewall. Phys. Rev. D 90(12), 124024 (2014). arXiv:1406.6551 [gr-qc]

  15. G.F.R. Ellis, Astrophysical black holes may radiate, but they do not evaporate. arXiv:1310.4771 [gr-qc]

  16. G. Polhemus, A.J. Hamilton, Large entropy production inside black holes: A Simple model. JHEP 1008, 093 (2010). arXiv:1006.4195 [gr-qc]

  17. A.J. Hamilton, G. Polhemus, Stereoscopic visualization in curved spacetime: seeing deep inside a black hole. New J. Phys. 12, 123027 (2010). arXiv:1012.4043 [gr-qc]

  18. K. Banerjee, A. Paranjape, Semiclassical environment of collapsing shells. Phys. Rev. D 80, 124006 (2009). arXiv:0909.4668 [gr-qc]

  19. S. Singh, S. Chakraborty, Black hole kinematics: the âinâ -vacuum energy density and flux for different observers. Phys. Rev. D 90(2), 024011 (2014). arXiv:1404.0684 [gr-qc]

  20. S. Singh, Excavations at the gravitationally collapsed site: recent findings. J. Phys. Conf. Ser. 600(1), 012035 (2015). arXiv:1412.1028 [gr-qc]

  21. M. Smerlak, S. Singh, New perspectives on Hawking radiation. Phys. Rev. D 88(10), 104023, (2013). arXiv:1304.2858 [gr-qc]

  22. R. Brout, S. Massar, R. Parentani, P. Spindel, A Primer for black hole quantum physics. Phys. Rep. 260, 329–454 (1995). arXiv:0710.4345 [gr-qc]

  23. W. Unruh, Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Google Scholar 

  24. P. Langlois, Causal particle detectors and topology. Ann. Phys. 321, 2027–2070 (2006). arXiv:gr-qc/0510049 [gr-qc]

  25. J. Louko, A. Satz, Transition rate of the Unruh-DeWitt detector in curved spacetime. Class. Quant. Grav. 25, 055012 (2008). arXiv:0710.5671 [gr-qc]

  26. A. Satz, Then again, how often does the Unruh-DeWitt detector click if we switch it carefully? Class. Quant. Grav. 24, 1719–1732 (2007). arXiv:gr-qc/0611067 [gr-qc]

  27. L. Ford, T.A. Roman, Motion of inertial observers through negative energy. Phys. Rev. D 48, 776–782. arXiv:gr-qc/9303038 [gr-qc]

  28. L. Ford, T.A. Roman, Averaged energy conditions and quantum inequalities. Phys. Rev. D 51, 4277–4286 (1995). arXiv:gr-qc/9410043 [gr-qc]

  29. L. Ford, T.A. Roman, Averaged energy conditions and evaporating black holes. Phys. Rev. D 53, 1988–2000 (1996). arXiv:gr-qc/9506052 [gr-qc]

  30. M. Visser, Gravitational vacuum polarization. 1: Energy conditions in the Hartle-Hawking vacuum. Phys. Rev. D 54, 5103–5115 (1996). arXiv:gr-qc/9604007 [gr-qc]

  31. M. Visser, Gravitational vacuum polarization. 2: Energy conditions in the Boulware vacuum. Phys. Rev. D 54, 5116–5122 (1996). arXiv:gr-qc/9604008 [gr-qc]

  32. M. Visser, Gravitational vacuum polarization. 3: Energy conditions in the (1+1) Schwarzschild space-time. Phys. Rev. D 54, 5123–5128 (1996). arXiv:gr-qc/9604009 [gr-qc]

  33. T. Padmanabhan, T. Singh, Response of an accelerated detector coupled to the stress—Energy tensor. Class. Quant. Grav. 4, 1397–1407 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Oppenheimer, H. Snyder, On Continued gravitational contraction. Phys. Rev. 56, 455–459 (1939)

    Article  ADS  MATH  Google Scholar 

  35. C. Vaz, S. Gutti, C. Kiefer, T. Singh, Quantum gravitational collapse and Hawking radiation in 2+1 dimensions. Phys. Rev. D 76, 124021 (2007). arXiv:0710.2164 [gr-qc]

  36. S. Ross, R.B. Mann, Gravitationally collapsing dust in (2+1)-dimensions. Phys. Rev. D 47, 3319–3322 (1993). arXiv:hep-th/9208036 [hep-th]

  37. R. Casadio, Semiclassical collapse of a sphere of dust and Hawking radiation. Nucl. Phys. Proc. Suppl. 57, 177–180 (1997). arXiv:gr-qc/9611062 [gr-qc]

  38. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, 1st edn (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  39. P. Davies, S. Fulling, W. Unruh, Energy momentum tensor near an evaporating Black Hole. Phys. Rev. D 13, 2720–2723 (1976)

    Google Scholar 

  40. R.C. Tolman, P. Ehrenfest, Temperature equilibrium in a static gravitational field. Phys. Rev. 36(12), 1791–1798 (1930)

    Google Scholar 

  41. K.W. Howard, Vacuum \(<t (\mu ) (\nu )>\) in Schwarzschild space-time. Phys. Rev. D 30, 2532–2547 (1984)

    Google Scholar 

  42. B. Jensen, A. Ottewill, Renormalized electromagnetic stress tensor in Schwarzschild space-time. Phys. Rev. D 39, 1130 (1989)

    Google Scholar 

  43. P.R. Anderson, W.A. Hiscock, D.A. Samuel, Stress energy tensor of quantized scalar fields in static black hole space-times. Phys. Rev. Lett. 70, 1739–1742 (1993)

    Article  ADS  Google Scholar 

  44. P.R. Anderson, W.A. Hiscock, D.J. Loranz, Semiclassical stability of the extreme Reissner-Nordstrom black hole. Phys. Rev. Lett. 74, 4365–4368 (1995). arXiv:gr-qc/9504019 [gr-qc]

  45. S.M. Christensen, Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point separation method. Phys. Rev. D 14, 2490–2501 (1976)

    Google Scholar 

  46. W.A. Hiscock, S.L. Larson, P.R. Anderson, Semiclassical effects in black hole interiors. Phys. Rev. D 56, 3571–3581 (1997). arXiv:gr-qc/9701004 [gr-qc]

  47. L.C. Barbado, C. Barcelo, L.J. Garay, Hawking radiation as perceived by different observers. Class. Quant. Grav. 28, 125021 (2011). arXiv:1101.4382 [gr-qc]

  48. C. Barcelo, S. Liberati, S. Sonego, M. Visser, Minimal conditions for the existence of a Hawking-like flux. Phys. Rev. D 83, 041501 (2011). arXiv:1011.5593 [gr-qc]

  49. A. Paranjape, T. Padmanabhan, Radiation from collapsing shells, semiclassical backreaction and black hole formation. Phys. Rev. D 80, 044011 (2009). arXiv:0906.1768 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty .

Appendices

Appendix A

In this Appendix, we present the steps for deriving various results mentioned in Chap. 9.

A.1 Stress-Energy Tensor: Explicit Derivation

1.1 A.1.1 Exterior Region

The various derivatives of the conformal factor in the exterior region have the following expressions:

$$\begin{aligned} \partial _{+}C=\frac{r-1}{2r^{3}}\frac{dB/dU}{dA/dU};\partial _{+}^{2}C=\frac{(r-1)(3-2r)}{4r^{5}}\frac{dB/dU}{dA/dU} \end{aligned}$$
(9.60)
$$\begin{aligned} \partial _{-}C=\frac{r-1}{r}\partial _{-}\left( \frac{dB/dU}{dA/dU}\right) -\frac{r-1}{2r^{3}} \left( \frac{dB/dU}{dA/dU} \right) ^{2} \end{aligned}$$
(9.61)
$$\begin{aligned} \partial _{-}^{2}C&=-\frac{3}{2}\frac{r-1}{r^{3}}\frac{dB/dU}{dA/dU}\partial _{-} \left( \frac{dB/dU}{dA/dU} \right) +\frac{r-1}{r}\partial _{-}^{2}\left( \frac{dB/dU}{dA/dU}\right) \nonumber \\&+\frac{(3-2r)(r-1)}{4r^{5}}\left( \frac{dB/dU}{dA/dU}\right) ^{3} \end{aligned}$$
(9.62)
$$\begin{aligned} \partial _{-}\partial _{+}C=\frac{r-1}{2r^{3}}\partial _{-}\left( \frac{dB/dU}{dA/dU}\right) -\left( \frac{dB/dU}{dA/dU}\right) ^{2}\frac{(3-2r)(r-1)}{4r^{5}} \end{aligned}$$
(9.63)

With the following expressions for energy momentum tensor:

$$\begin{aligned} \langle T_{++}\rangle =\frac{\kappa ^{2}}{48\pi }\left( \frac{3}{r^{4}}-\frac{4}{r^{3}}\right) ;\langle T_{+-}\rangle =\frac{\kappa ^{2}}{12\pi }\frac{r-1}{r^{4}}\frac{dB/dU}{dA/dU} \end{aligned}$$
(9.64)
$$\begin{aligned} \langle T_{--}\rangle&= \frac{\kappa ^{2}}{48\pi }\Bigg [\left( \frac{dB/dU}{dA/dU}\right) ^{2} \left( \frac{3}{r^{4}}-\frac{4}{r^{3}}\right) \nonumber \\&+16\left\{ \frac{1}{2}\frac{\partial _{-}^{2}\left( \frac{dB/dU}{dA/dU}\right) }{\frac{dB/dU}{dA/dU}}-\frac{3}{4}\left( \frac{\partial _{-}\left( \frac{dB/dU}{dA/dU}\right) }{\frac{dB/dU}{dA/dU}} \right) ^{2} \right\} \Bigg ] \nonumber \\&=\frac{\kappa ^{2}}{48\pi }\left( \frac{dB/dU}{dA/dU}\right) ^{2} \Bigg [\left( \frac{3}{r^{4}}-\frac{4}{r^{3}}\right) +\frac{16}{\left( \frac{dB}{dU}\right) ^{2}} \nonumber \\&\times \Big [\left\{ \frac{1}{2}\frac{\partial _{U}^{2}\left( dB/dU\right) }{dB/dU} -\frac{3}{4}\left( \frac{\partial _{U}\left( dB/dU\right) }{dB/dU} \right) ^{2} \right\} \nonumber \\&-\left\{ \frac{1}{2}\frac{\partial _{U}^{2}\left( dA/dU\right) }{dA/dU} -\frac{3}{4}\left( \frac{\partial _{U}\left( dA/dU\right) }{dA/dU} \right) ^{2} \right\} \Big ]\Bigg ] \end{aligned}$$
(9.65)

these relations can be simplified to arrive at,

$$\begin{aligned} \langle T_{+-}\rangle =\frac{\kappa ^{2}}{12\pi }\frac{r-1}{r^{4}} \left( \frac{\cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) }{\cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) }\right) \frac{\cos ^{2}\left( \frac{U+\chi _{0}}{2}\right) }{\cos ^{2}\left( \frac{U-\chi _{0}}{2}\right) } \end{aligned}$$
(9.66)
$$\begin{aligned} \langle T_{--}\rangle&=\frac{\kappa ^{2}}{48\pi } \left( \left( \frac{\cot \chi _{0}+\tan \left( \frac{U+\chi _{0}}{2}\right) }{\cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) }\right) \frac{\cos ^{2}\left( \frac{U+\chi _{0}}{2}\right) }{\cos ^{2}\left( \frac{U-\chi _{0}}{2}\right) } \right) ^2 \left[ \left( \frac{3}{r^{4}}-\frac{4}{r^{3}}\right) \right. \nonumber \\&+\left( \frac{a_{max}\cos ^{2}\left( \frac{U+\chi _{0}}{2}\right) }{\sin \chi _{0}\left( \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right) }\right) ^{-2} \nonumber \\&\times \left( -15\left[ \tan ^{2}\left( \frac{U+\chi _{0}}{2}\right) -\tan ^{2}\left( \frac{U-\chi _{0}}{2}\right) \right] \right. \nonumber \\&-6\cot \chi _{0}\left[ \tan \left( \frac{U+\chi _{0}}{2}\right) +\tan \left( \frac{U-\chi _{0}}{2}\right) \right] \nonumber \\&+\frac{4\cot \chi _{0}}{\sin ^{2}\chi _{0}}\left[ \frac{1}{\cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) }\right. \nonumber \\&\left. -\frac{1}{\cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) }\right] +\frac{a_{max}}{\sin \chi _{0}}\left[ \frac{1}{\left( \cot \chi _{0} -\tan \left( \frac{U+\chi _{0}}{2}\right) \right) ^{2}}\right. \nonumber \\&-\left. \left. \left. \frac{1}{\left( \cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) \right) ^{2}} \right] \right) \right] \end{aligned}$$
(9.67)

In arriving at the above relations we have used the following expressions for the various derivatives dA / dU and dB / dU are respectively:

$$\begin{aligned} \frac{dA}{dU}=\frac{a_{max}\cos ^{2}\left( \frac{U-\chi _{0}}{2}\right) }{\sin \chi _{0}\left( \cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) \right) };\frac{dB}{dU}=\frac{a_{max}\cos ^{2}\left( \frac{U+\chi _{0}}{2}\right) }{\sin \chi _{0}\left( \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right) } \end{aligned}$$
(9.68)
$$\begin{aligned} \frac{d^{2}A}{dU^{2}}=-\frac{1}{2}\frac{\left[ 1+2\sin ^{2}\left( \frac{U-\chi _{0}}{2}\right) +\cot \chi _{0}\sin \left( U-\chi _{0}\right) \right] }{\sin ^{4}\chi _{0}\left( \cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) \right) ^{2}} \end{aligned}$$
(9.69)
$$\begin{aligned} \frac{d^{2}B}{dU^{2}}=\frac{1}{2}\frac{\left[ 1+2\sin ^{2}\left( \frac{U+\chi _{0}}{2}\right) -\cot \chi _{0}\sin \left( U+\chi _{0}\right) \right] }{\sin ^{4}\chi _{0}\left( \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right) ^{2}} \end{aligned}$$
(9.70)

as well as the following derivatives:

$$\begin{aligned} \frac{1}{2}&\frac{\partial _{U}^{2}\left( dA/dU\right) }{dA/dU} -\frac{3}{4}\left( \frac{\partial _{U}\left( dA/dU\right) }{dA/dU} \right) ^{2} = -\frac{1}{16}\Big [15\tan ^{4}\left( \frac{U-\chi _{0}}{2}\right) \nonumber \\&+24\cot \chi _{0} \tan ^{3}\left( \frac{U-\chi _{0}}{2}\right) +10\tan ^{2} \left( \frac{U-\chi _{0}}{2} \right) \nonumber \\&+4\cot ^{2}\chi _{0}\left\{ 1+2\tan ^{2}\left( \frac{U-\chi _{0}}{2}\right) \right\} \nonumber \\&+16\cot \chi _{0}\tan \left( \frac{U-\chi _{0}}{2}\right) -1\Big ] \left[ \cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) \right] ^{-2} \nonumber \\&=-\frac{1}{16}\Big [15\tan ^{2}\left( \frac{U-\chi _{0}}{2}\right) -6\cot \chi _{0}\tan \left( \frac{U-\chi _{0}}{2}\right) +5\left( 1+\sin ^{-2}\chi _{0}\right) \nonumber \\&-\frac{4\sin ^{-2}\chi _{0}\cot \chi _{0}}{\cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) } -\frac{a_{max}}{\sin \chi _{0}\left( \cot \chi _{0} +\tan \left( \frac{U-\chi _{0}}{2}\right) \right) ^{2}}\Big ] \end{aligned}$$
(9.71)

and

$$\begin{aligned} \frac{1}{2}&\frac{\partial _{U}^{2}\left( dB/dU\right) }{dB/dU} -\frac{3}{4}\left( \frac{\partial _{U}\left( dB/dU\right) }{dB/dU} \right) ^{2} = -\frac{1}{16}\Big [15\tan ^{4}\left( \frac{U+\chi _{0}}{2}\right) \nonumber \\&-24\cot \chi _{0} \tan ^{3}\left( \frac{U+\chi _{0}}{2}\right) -10\tan ^{2}\left( \frac{U+\chi _{0}}{2} \right) \nonumber \\&+4\cot ^{2}\chi _{0}\left\{ 1+2\tan ^{2}\left( \frac{U+\chi _{0}}{2}\right) \right\} \nonumber \\&-16\cot \chi _{0}\tan \left( \frac{U+\chi _{0}}{2}\right) -1\Big ] \left[ \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right] ^{-2} \nonumber \\&=-\frac{1}{16}\Big [15\tan ^{2}\left( \frac{U+\chi _{0}}{2}\right) +6\cot \chi _{0}\tan \left( \frac{U+\chi _{0}}{2}\right) +5\left( 1+\sin ^{-2}\chi _{0}\right) \nonumber \\&-\frac{4\sin ^{-2}\chi _{0}\cot \chi _{0}}{\cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) } -\frac{a_{max}}{\sin \chi _{0}\left( \cot \chi _{0} -\tan \left( \frac{U+\chi _{0}}{2}\right) \right) ^{2}}\Big ] \end{aligned}$$
(9.72)

1.2 A.1.2 Interior Region

For the interior region the various derivatives of the conformal factors are:

$$\begin{aligned} \frac{1}{C}\partial _{+}C&=\frac{1}{\left( dA/dV\right) }\left[ \frac{1}{a^{2}}\frac{da^{2}}{dV}- \frac{d^{2}A/dV^{2}}{dA/dV}\right] \nonumber \\ \frac{1}{C}\partial _{-}C&=\frac{1}{\left( dA/dU\right) }\left[ \frac{1}{a^{2}}\frac{da^{2}}{dU}- \frac{d^{2}A/dU^{2}}{dA/dU}\right] \end{aligned}$$
(9.73)
$$\begin{aligned} \frac{1}{C}\partial _{+}^{2}C&=\frac{1}{\left( dA/dV\right) ^{2}} \Bigg [\frac{1}{a^{2}}\frac{d^{2}a^{2}}{dV^{2}} -\frac{3}{a^{2}}\frac{da^{2}}{dV}\frac{1}{dA/dV}\frac{d^{2}A}{dV^{2}} \nonumber \\&-\frac{1}{dA/dV}\frac{d^{3}A}{dV^{3}} +3\left( \frac{1}{dA/dV}\frac{d^{2}A}{dV^{2}}\right) ^{2} \Bigg ] \end{aligned}$$
(9.74)
$$\begin{aligned} \frac{1}{C}\partial _{-}^{2}C&=\frac{1}{\left( dA/dU\right) ^{2}} \Bigg [\frac{1}{a^{2}}\frac{d^{2}a^{2}}{dU^{2}} -\frac{3}{a^{2}}\frac{da^{2}}{dU}\frac{1}{dA/dU}\frac{d^{2}A}{dU^{2}} -\frac{1}{dA/dU}\frac{d^{3}A}{dU^{3}} \nonumber \\&+3\left( \frac{1}{dA/dU}\frac{d^{2}A}{dU^{2}}\right) ^{2} \Bigg ] \end{aligned}$$
(9.75)
$$\begin{aligned} \frac{1}{C}\partial _{-}\partial _{+}C&=\frac{1}{\frac{dA}{dV}\frac{dA}{dU}} \left[ \frac{1}{a^{2}}\frac{d^{2}a^{2}}{dUdV} -\frac{1}{a^{2}}\frac{da^{2}}{dU}\frac{1}{dA/dV}\frac{d^{2}A}{dV^{2}} -\frac{1}{a^{2}}\frac{da^{2}}{dV}\frac{1}{dA/dU}\frac{d^{2}A}{dU^{2}}\right. \nonumber \\&\left. +\frac{1}{dA/dV}\frac{d^{2}A}{dV^{2}}\frac{1}{dA/dU}\frac{d^{2}A}{dU^{2}}\right] \end{aligned}$$
(9.76)

Then the components of the stress energy tensor in the inside region are:

$$\begin{aligned} \langle T_{++}\rangle&=\frac{1}{12\pi }\frac{1}{\left( dA/dV\right) ^{2}} \left[ \left\{ \frac{1}{2a^{2}}\frac{d^{2}a^{2}}{dV^{2}} -\frac{3}{4}\left( \frac{1}{a^{2}}\frac{da^{2}}{dV}\right) ^{2} \right\} -\left\{ \frac{1}{2}\frac{1}{dA/dV}\frac{d^{3}A}{dV^{3}}\right. \right. \nonumber \\&\left. \left. -\frac{3}{4}\frac{1}{\left( dA/dV\right) ^{2}}\left( \frac{d^{2}A}{dV^{2}}\right) ^{2} \right\} \right] \nonumber \\&=\frac{1}{12\pi }\frac{1}{\left( dA/dV\right) ^{2}}\Bigg [-\frac{1}{8} \left( \frac{3a_{max}\sin \chi _{0}}{r\left( \frac{U+V}{2}\right) }-2\right) \nonumber \\&-\left\{ \frac{1}{2}\frac{\partial _{V}^{2}\left( dA/dV\right) }{\left( dA/dV\right) } -\frac{3}{4}\left( \frac{\partial _{V}\left( dA/dV\right) }{\left( dA/dV\right) }\right) ^{2} \right\} \Bigg ] \end{aligned}$$
(9.77)
$$\begin{aligned} \langle T_{--}\rangle&=\frac{1}{12\pi }\frac{1}{\left( dA/dU\right) ^{2}} \left[ \left\{ \frac{1}{2a^{2}}\frac{d^{2}a^{2}}{dU^{2}} -\frac{3}{4}\left( \frac{1}{a^{2}}\frac{da^{2}}{dU}\right) ^{2} \right\} -\left\{ \frac{1}{2}\frac{1}{dA/dU}\frac{d^{3}A}{dU^{3}}\right. \right. \nonumber \\&\left. \left. -\frac{3}{4}\frac{1}{\left( dA/dU\right) ^{2}}\left( \frac{d^{2}A}{dU^{2}}\right) ^{2} \right\} \right] \nonumber \\&=\frac{1}{12\pi }\frac{1}{\left( dA/dU\right) ^{2}} \left[ -\frac{1}{8} \left( \frac{3a_{max}\sin \chi _{0}}{r\left( \frac{U+V}{2}\right) }-2\right) -\left\{ \frac{1}{2}\frac{\partial _{U}^{2}\left( dA/dU\right) }{\left( dA/dU\right) }\right. \right. \nonumber \\&\left. \left. -\frac{3}{4}\left( \frac{\partial _{U}\left( dA/dU\right) }{\left( dA/dU\right) }\right) ^{2} \right\} \right] \end{aligned}$$
(9.78)
$$\begin{aligned} \langle T_{+-}\rangle&=\frac{1}{24\pi }\frac{1}{dA/dV}\frac{1}{dA/dU} \left[ \frac{1}{a^{2}}\frac{d^{2}a^{2}}{dUdV} -\frac{1}{a^{2}}\frac{da^{2}}{dU}\frac{1}{a^{2}}\frac{da^{2}}{dV}\right] \nonumber \\&=-\frac{1}{48\pi }\frac{1}{dA/dV}\frac{1}{dA/dU}\frac{1}{1+\cos \left( \frac{U+V}{2} \right) } \end{aligned}$$
(9.79)

where various derivatives of the quantity A are given in Appendix F.1.1.

A.2 Energy Density and Flux For Various Observers

1.1 A.2.1 Static Observer

Below we provide the full expressions for energy density and flux calculated for static observer:

$$\begin{aligned} \mathcal {U}&=\langle T_{++}\rangle \left( \dot{V}^{+}\right) ^{2} +\langle T_{--}\rangle \left( \dot{V}^{-}\right) ^{2} +2\langle T_{+-}\rangle \dot{V}^{+}\dot{V}^{-} \nonumber \\&=\frac{\kappa ^{2}}{48\pi }\left( \frac{r}{r-1}\right) \Big [\left( -\frac{2}{r^{4}}\right) +\frac{\sin ^{2}\chi _{0}}{a_{max}^{2}\cos ^{4} \left( \frac{U+\chi _{0}}{2}\right) }\left( \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right) ^{2} \nonumber \\&\times \Big \lbrace -15\left[ \tan ^{2}\left( \frac{U+\chi _{0}}{2}\right) -\tan ^{2}\left( \frac{U-\chi _{0}}{2}\right) \right] \nonumber \\&-6\cot \chi _{0}\left[ \tan \left( \frac{U+\chi _{0}}{2}\right) +\tan \left( \frac{U-\chi _{0}}{2}\right) \right] \nonumber \\&+\frac{4\cot \chi _{0}}{\sin ^{2}\chi _{0}}\left[ \frac{1}{\cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) }-\frac{1}{\cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) }\right] \Big \rbrace \nonumber \\&+\frac{\sin \chi _{0}}{a_{max}\cos ^{4}\left( \frac{U+\chi _{0}}{2}\right) }\left[ 1 -\frac{\left( \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right) ^{2}}{\left( \cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) \right) ^{2}} \right] \Big ] \end{aligned}$$
(9.80)

and the expression for flux turns out to be:

$$\begin{aligned} \mathcal {F}&=-\langle T_{ab}\rangle u^{a}n^{b}=-\langle T_{++}\rangle \left( \dot{V}^{+}\right) ^{2} +\langle T_{--}\rangle \left( \dot{V}^{-}\right) ^{2} \nonumber \\&=\frac{\kappa ^{2}}{48\pi }\left( \frac{r}{r-1}\right) \Big [\frac{\sin ^{2}\chi _{0}}{a_{max}^{2}\cos ^{4} \left( \frac{U+\chi _{0}}{2}\right) }\left( \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right) ^{2} \nonumber \\&\times \Big \lbrace -15\left[ \tan ^{2}\left( \frac{U+\chi _{0}}{2}\right) -\tan ^{2}\left( \frac{U-\chi _{0}}{2}\right) \right] \nonumber \\&-6\cot \chi _{0}\left[ \tan \left( \frac{U+\chi _{0}}{2}\right) +\tan \left( \frac{U-\chi _{0}}{2}\right) \right] \nonumber \\&+\frac{4\cot \chi _{0}}{\sin ^{2}\chi _{0}}\left[ \frac{1}{\cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) }-\frac{1}{\cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) }\right] \Big \rbrace \nonumber \\&+\frac{\sin \chi _{0}}{a_{max}\cos ^{4}\left( \frac{U+\chi _{0}}{2}\right) }\left[ 1 -\frac{\left( \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right) ^{2}}{\left( \cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) \right) ^{2}} \right] \Big ] \end{aligned}$$
(9.81)

1.2 A.2.2 Radially In-Falling Observers: Inside

The energy density for radially in-falling observer has the following expression:

$$\begin{aligned} \mathcal {U}&=\frac{\kappa ^{2}}{48\pi }\frac{1}{a^{2}\left( \eta \right) }\Big [-8 \sec ^{2}\frac{\eta }{2} +4+\frac{1}{2}\Big \lbrace 15\tan ^{2}\left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \nonumber \\&-6\cot \chi _{0}\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) +5\left( 1+\sin ^{-2}\chi _{0}\right) \nonumber \\&-\frac{4\sin ^{-2}\chi _{0}\cot \chi _{0}}{\cot \chi _{0} +\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) } -\frac{a_{max}}{\sin \chi _{0}\left( \cot \chi _{0} +\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right) ^{2}} \nonumber \\&+15\tan ^{2}\left( \frac{\eta -\chi _{0}+\tilde{\chi }}{2}\right) -6\cot \chi _{0}\tan \left( \frac{\eta -\chi _{0}+\tilde{\chi }}{2}\right) +5\left( 1+\sin ^{-2}\chi _{0}\right) \nonumber \\&-\frac{4\sin ^{-2}\chi _{0}\cot \chi _{0}}{\cot \chi _{0} +\tan \left( \frac{\eta -\chi _{0}+\tilde{\chi }}{2}\right) } -\frac{a_{max}}{\sin \chi _{0}\left( \cot \chi _{0} +\tan \left( \frac{\eta -\chi _{0}+\tilde{\chi }}{2}\right) \right) ^{2}} \Big \rbrace \Big ] \end{aligned}$$
(9.82)

while the flux has the following expression:

$$\begin{aligned} \mathcal {F}&=\frac{\kappa ^{2}}{48\pi }\frac{1}{a^{2}\left( \eta \right) }\frac{1}{2} \Big \lbrace 15\tan ^{2}\left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) -6\cot \chi _{0}\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \nonumber \\&+5\left( 1+\sin ^{-2}\chi _{0}\right) -\frac{4\sin ^{-2}\chi _{0}\cot \chi _{0}}{\cot \chi _{0} +\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) } \nonumber \\&-\frac{a_{max}}{\sin \chi _{0}\left( \cot \chi _{0} +\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right) ^{2}} -15\tan ^{2}\left( \frac{\eta -\chi _{0}+\tilde{\chi }}{2}\right) \nonumber \\&+6\cot \chi _{0}\tan \left( \frac{\eta -\chi _{0}+\tilde{\chi }}{2}\right) -5\left( 1+\sin ^{-2}\chi _{0}\right) \nonumber \\&+\frac{4\sin ^{-2}\chi _{0}\cot \chi _{0}}{\cot \chi _{0} -\tan \left( \frac{\eta -\chi _{0}+\tilde{\chi }}{2}\right) } +\frac{a_{max}}{\sin \chi _{0}\left( \cot \chi _{0} +\tan \left( \frac{\eta -\chi _{0}+\tilde{\chi }}{2}\right) \right) ^{2}} \Big \rbrace \end{aligned}$$
(9.83)

1.3 A.2.3 Radially In-falling Observers: Outside

For radially in-falling observer outside the dust ball has the following expression for energy density:

$$\begin{aligned} \mathcal {U}&=\langle T_{++}\rangle \left( \dot{V}^{+}\right) ^{2} +\langle T_{--}\rangle \left( \dot{V}^{-}\right) ^{2} +2\langle T_{+-}\rangle \dot{V}^{+}\dot{V}^{-} \nonumber \\&=\frac{\kappa ^{2}}{48\pi } 4E^{2}\left( \frac{r}{r-1}\right) ^{2} \left( \frac{3}{r^{4}}-\frac{4}{r^{3}}\right) +\frac{\kappa ^{2}}{24\pi }\left( \frac{r}{r-1}\right) \left( -\frac{7}{r^{4}}+\frac{8}{r^{3}}\right) \nonumber \\&+\frac{\kappa ^{2}}{48\pi }\left( \frac{r}{r-1}\right) ^{2} \left( E+\sqrt{E^{2}-\frac{r-1}{r}}\right) ^{2} \nonumber \\&\times \Big [\frac{\sin ^{2}\chi _{0}}{a_{max}^{2}\cos ^{4} \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) }\left( \cot \chi _{0}-\tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) \right) ^{2} \nonumber \\&\times \Big \lbrace -15\left[ \tan ^{2}\left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) -\tan ^{2}\left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right] \nonumber \\&-6\cot \chi _{0}\left[ \tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) +\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right] \nonumber \\&+\frac{4\cot \chi _{0}}{\sin ^{2}\chi _{0}}\left[ \frac{1}{\cot \chi _{0}-\tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) }-\frac{1}{\cot \chi _{0}+\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) }\right] \Big \rbrace \nonumber \\&+\frac{\sin \chi _{0}}{a_{max}\cos ^{4}\left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) }\left[ 1 -\frac{\left( \cot \chi _{0}-\tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) \right) ^{2}}{\left( \cot \chi _{0}+\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right) ^{2}} \right] \Big ] \end{aligned}$$
(9.84)

and the flux has the following expression:

$$\begin{aligned} \mathcal {F}&=-\langle T_{ab}\rangle u^{a}n^{b}=-\langle T_{++}\rangle \left( \dot{V}^{+}\right) ^{2} +\langle T_{--}\rangle \left( \dot{V}^{-}\right) ^{2} \nonumber \\&=\frac{\kappa ^{2}}{48 \pi }4E\sqrt{E^{2}-\frac{r-1}{r}} \left( \frac{r}{r-1}\right) ^{2} \left( \frac{3}{r^{4}}-\frac{4}{r^{3}}\right) +\frac{\kappa ^{2}}{48\pi }\left( \frac{r}{r-1}\right) ^{2} \nonumber \\&\times \left( E+\sqrt{E^{2}-\frac{r-1}{r}}\right) ^{2}\Big [\frac{\sin ^{2}\chi _{0}}{a_{max}^{2}\cos ^{4} \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) }\left( \cot \chi _{0}-\tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) \right) ^{2} \nonumber \\&\times \Big \lbrace -15\left[ \tan ^{2}\left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) -\tan ^{2}\left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right] \nonumber \\&-6\cot \chi _{0}\left[ \tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) +\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right] \nonumber \\&+\frac{4\cot \chi _{0}}{\sin ^{2}\chi _{0}}\left[ \frac{1}{\cot \chi _{0}-\tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) }-\frac{1}{\cot \chi _{0}+\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) }\right] \Big \rbrace \nonumber \\&+\frac{\sin \chi _{0}}{a_{max}\cos ^{4}\left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) }\left[ 1 -\frac{\left( \cot \chi _{0}-\tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) \right) ^{2}}{\left( \cot \chi _{0}+\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right) ^{2}} \right] \Big ] \end{aligned}$$
(9.85)

A.3 Effective temperature for various observers

In this section we present the full expression for effective temperature measured by detectors in various trajectories. For static observer the effective temperature turns out to be:

$$\begin{aligned} T_{-}&=\frac{1}{2\pi } \left| \frac{\ddot{V}^{-}}{\dot{V}^{-}}\right| \nonumber \\&=\frac{1}{2\pi }\left| \dot{u}~\left( \frac{\frac{d^{2}A}{dU^{2}}}{\frac{dA}{dU}\frac{dB}{dU}} -\frac{\frac{d^{2}B}{dU^{2}}}{\left( \frac{dB}{dU}\right) ^{2}} \right) \right| \nonumber \\&=\frac{1}{4\pi }\sqrt{\frac{r}{r-1}}\sin ^{4}\chi _{0} \nonumber \\&\times \Big \lbrace \frac{\left[ 1+2\sin ^{2}\left( \frac{U-\chi _{0}}{2}\right) +\cot \chi _{0}\sin \left( U-\chi _{0}\right) \right] \left( \cot \chi _{0}-\tan \left( \frac{U+\chi _{0}}{2}\right) \right) }{\left( \cot \chi _{0}+\tan \left( \frac{U-\chi _{0}}{2}\right) \right) \cos ^{2}\left( \frac{U+\chi _{0}}{2}\right) \cos ^{2}\left( \frac{U-\chi _{0}}{2}\right) } \nonumber \\&+\frac{\left[ 1+2\sin ^{2}\left( \frac{U+\chi _{0}}{2}\right) -\cot \chi _{0}\sin \left( U+\chi _{0}\right) \right] }{\cos ^{4}\left( \frac{U+\chi _{0}}{2}\right) } \Big \rbrace \end{aligned}$$
(9.86)

For radially in-falling observes inside the dust sphere the effective temperature turns out to be:

$$\begin{aligned} T_{-}=\frac{1}{4\pi }\left| \frac{1 +2\sin ^{2}\left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) +\cot \chi _{0}\sin \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) }{\cos ^{2}\left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \left\{ \cot \chi _{0}+\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right\} } \right| \end{aligned}$$
(9.87)

Finally, for radially in-falling observers in the Schwarzschild spacetime effective temperature takes the following expression:

$$\begin{aligned} T_{-}&=\frac{1}{2\pi }\Bigg \vert \frac{\ddot{u}}{\dot{u}} -\dot{u}\frac{\sin ^{4}\chi _{0}}{2} \nonumber \\&\Big \lbrace \frac{\left[ 1+2\sin ^{2}\left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) +\cot \chi _{0}\sin \left( \eta -\chi _{0}-\tilde{\chi }\right) \right] \left( \cot \chi _{0}-\tan \left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) \right) }{\left( \cot \chi _{0}+\tan \left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) \right) \cos ^{2}\left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) \cos ^{2}\left( \frac{\eta -\chi _{0}-\tilde{\chi }}{2}\right) } \nonumber \\&+\frac{\left[ 1+2\sin ^{2}\left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) -\cot \chi _{0}\sin \left( \eta +\chi _{0}-\tilde{\chi }\right) \right] }{\cos ^{4}\left( \frac{\eta +\chi _{0}-\tilde{\chi }}{2}\right) } \Big \rbrace \Bigg \vert \end{aligned}$$
(9.88)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, S. (2017). A Quantum Peek Inside the Black Hole Event Horizon. In: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63733-4_9

Download citation

Publish with us

Policies and ethics