Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 358 Accesses

Abstract

In this chapter we will review some earlier results, which will be helpful for the later parts of the thesis. This includes some interesting results in general relativity, definition of Noether current and gravitational momentum etc. We have also reviewed Lanczos-Lovelock models of gravity as it will find extensive use in subsequent chapters. We have also provided a discussion on a particular coordinate system adapted to null surfaces, known as Gaussian Null Coordinates, which will be very useful for our thermodynamic considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Padmanabhan, Gravitation: Foundations and Frontiers (Cambridge University Press, Cambridge, UK, 2010)

    Book  MATH  Google Scholar 

  2. M.V. Ostrogradsky, Memoires de lAcademie Imperiale des Science de Saint-Petersbourg, 4, 385 (1850)

    Google Scholar 

  3. J. York, Role of conformal three geometry in the dynamics of gravitation. Phys. Rev. Lett. 28, 1082–1085 (1972)

    Article  ADS  Google Scholar 

  4. G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)

    Article  ADS  Google Scholar 

  5. J. Charap, J. Nelson, Surface integrals and the gravitational action. J. Phys. A: Math. Gen. 16 1661 (1983)

    Google Scholar 

  6. C. Lanczos, Z. Phys. 73, 147 (1932)

    Google Scholar 

  7. C. Lanczos, Electricity as a natural property of Riemannian geometry. Rev. Mod. Phys. 39, 716–736 (1932)

    Article  MATH  Google Scholar 

  8. C. Lanczos, Z. Phys. 39, 842 (1938)

    Google Scholar 

  9. C. Lanczos, A remarkable property of the Riemann-Christoffel tensor in four dimensions. Annals Math. 39, 842–850 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Lovelock, The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. K. Parattu, B.R. Majhi, T. Padmanabhan, Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm. Phys. Rev. D 87, 124011 (Jun, 2013). arXiv:gr-qc/1303.1535 [gr-qc], doi:10.1103/PhysRevD.87.124011

  12. A. Eddington, The Mathematical Theory of Relativity, 2nd edn. (Cambridge University Press, Cambridge, UK, 1924)

    MATH  Google Scholar 

  13. E. Schrodinger, Space-Time Structure (Cambridge Science Classics. Cambridge University Press, Cambridge, UK, 1950)

    MATH  Google Scholar 

  14. A. Einstein, B. Kaufman, A new form of the general relativistic field equations. Annals Math. 62, 128–138 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Einstein, B. Kaufman, A new form of the general relativistic field equations. Annals Math. 62, 128–138 (1955), http://www.jstor.org/stable/2007103

  16. T. Padmanabhan, Momentum density of spacetime and the gravitational dynamics. arXiv:1506.03814 [gr-qc]

  17. T. Padmanabhan, Holographic gravity and the surface term in the Einstein-Hilbert action. Braz. J. Phys. 35, 362–372 (2005). arXiv:gr-qc/0412068 [gr-qc]

  18. A. Mukhopadhyay, T. Padmanabhan, Holography of gravitational action functionals. Phys. Rev. D 74, 124023 (2006). arXiv:hep-th/0608120

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Kolekar, T. Padmanabhan, Holography in action. Phys. Rev. D 82, 024036 (2010). arXiv:1005.0619 [gr-qc]

    Article  ADS  Google Scholar 

  20. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, 3rd edn. (W. H. Freeman and Company, 1973)

    Google Scholar 

  21. H. Goldstein, C. Poole, J. Safko, Classical Mechanics. 3rd edn. (Pearson Education, 2007)

    Google Scholar 

  22. A. Palatini, Deduzione invariantiva delle equazioni gravitazionali dal principio di hamilton. Rend. Circ. Mat. Palermo 43, 203–212 (1919)

    Article  MATH  Google Scholar 

  23. T. Padmanabhan, General relativity from a thermodynamic perspective. Gen. Rel. Grav. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. N. Dadhich, Characterization of the Lovelock gravity by Bianchi derivative. Pramana. 74, 875–882 (2010). arXiv:0802.3034 [gr-qc]

  25. D.G. Boulware, S. Deser, String generated gravity models. Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  26. L. Randall, R. Sundrum, A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999). arXiv:hep-ph/9905221 [hep-ph]

  27. P. Horava, E. Witten, Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94–114 (1996). arXiv:hep-th/9603142 [hep-th]

  28. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998). arXiv:hep-ph/9803315 [hep-ph]

  29. T. Padmanabhan, D. Kothawala, Lanczos-Lovelock models of gravity. Phys. Rept. 531, 115–171 (2013). arXiv:1302.2151 [gr-qc]

  30. A. Paranjape, S. Sarkar, T. Padmanabhan, Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 74, 104015 (2006). arXiv:hep-th/0607240 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Yale, T. Padmanabhan, Structure of Lanczos-Lovelock Lagrangians in Critical Dimensions. Gen. Rel. Grav. 43, 1549–1570 (2011). arXiv:1008.5154 [gr-qc]

  32. N. Kiriushcheva, S.V. Kuzmin, On Hamiltonian formulation of the Einstein-Hilbert action in two dimensions. Mod. Phys. Lett. A 21, 899–906 (2006). arXiv:hep-th/0510260 [hep-th]

  33. T. Padmanabhan, Some aspects of field equations in generalised theories of gravity. Phys. Rev. D 84, 124041 (2011). arXiv:1109.3846 [gr-qc]

    Article  ADS  Google Scholar 

  34. T. Padmanabhan, A physical interpretation of gravitational field equations. AIP Conf. Proc. 1241, 93–108 (2010). arXiv:0911.1403 [gr-qc]

  35. R.M. Wald, Black hole entropy is the Noether charge. Phys. Rev. D 48, 3427–3431 (1993). arXiv:gr-qc/9307038 [gr-qc]

  36. T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rept. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

    Article  ADS  Google Scholar 

  37. B.R. Majhi, T. Padmanabhan, Noether current, horizon virasoro algebra and entropy. Phys. Rev. D 85, 084040 (2012). arXiv:1111.1809 [gr-qc]

    Article  ADS  Google Scholar 

  38. V. Iyer, R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846–864 (1994). arXiv:gr-qc/9403028 [gr-qc]

  39. R.M. Wald, A. Zoupas, A general definition of ’conserved quantities’ in general relativity and other theories of gravity. Phys. Rev. D 61, 084027 (2000). arXiv:gr-qc/9911095 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99–104 (1996). arXiv:hep-th/9601029 [hep-th]

  41. A. Ashtekar, J. Baez, A. Corichi, K. Krasnov, Quantum geometry and black hole entropy. Phys. Rev. Lett. 80, 904–907 (1998). arXiv:gr-qc/9710007 [gr-qc]

  42. J.M. Garcia-Islas, BTZ black hole entropy: a spin foam model description. Class. Quant. Grav. 25, 245001 (2008). arXiv:0804.2082 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, A quantum source of entropy for black holes. Phys. Rev. D 34, 373–383 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. B.R. Majhi, T. Padmanabhan, Thermality and heat content of horizons from infinitesimal coordinate transformations. arXiv:1302.1206 [gr-qc]

  45. V. Moncrief, J. Isenberg, Symmetries of cosmological cauchy horizons. Commun. Math. Phys. 89(3) 387–413 (1983). doi:10.1007/BF01214662

  46. E.M. Morales, On a second law of black hole mechanics in a higher derivative theory of gravity (2008), http://www.theorie.physik.uni-goettingen.de/forschung/qft/theses/dipl/Morfa-Morales.pdf

  47. P. Davies, Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609–616 (1975)

    Article  ADS  Google Scholar 

  48. W. Unruh, Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, S. (2017). Setting the Stage: Review of Previous Results. In: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63733-4_2

Download citation

Publish with us

Policies and ethics