Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 365 Accesses

Abstract

The present chapter provides a broad introduction to the basic aspects discussed in this thesis. We present the key features of general relativity and of quantum field theory along with possible discord between them. A brief idea about emergent paradigm of gravity as well as possible avenues of exploration towards quantization of gravity has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. D. Landau, E. M. Lifshitz, Course of theoretical physics series in The Classical Theory of Fields, Vol. 2, 4th edn. (Butterworth-Heinemann, 1980)

    Google Scholar 

  2. S. Chandrasekhar, The general theory of relativity-why it is probably the most beautiful of all existing theories. J. Astrophy. Astron. 5, 3–11 (1984)

    Article  ADS  Google Scholar 

  3. C.M. Will, The Confrontation between general relativity and experiment. Living Rev. Rel. 9, 3 (2006). arXiv:gr-qc/0510072 [gr-qc]

    Article  MATH  Google Scholar 

  4. A.D. Rendall, The nature of spacetime singularities, in 100 Years Of Relativity : space-time structure: Einstein and beyond PP. 76–92 (2005). arXiv:gr-qc/0503112 [gr-qc]

  5. R.M. Wald, General Relativity, 1st edn. (The University of Chicago Press, 1984)

    Google Scholar 

  6. T. Padmanabhan, Conceptual issues in combining general relativity and quantum theory, in The Universe, (Springer, 2000), pp. 239–251

    Google Scholar 

  7. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, 3rd edn. (W. H. Freeman and Company, 1973)

    Google Scholar 

  8. S. Hawking, R. Penrose, The Nature Of Space And Time, (Princeton University Press, 2010)

    Google Scholar 

  9. A. Ashtekar, A. Barrau, Loop quantum cosmology: from pre-inflationary dynamics to observations. arXiv:1504.07559 [gr-qc]

  10. C. Rovelli, F. Vidotto, Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity. Phys. Rev. Lett. 111, 091303 (2013). arXiv:1307.3228 [gr-qc]

    Article  ADS  Google Scholar 

  11. R. Gambini, J. Pullin, Loop quantization of the Schwarzschild black hole. Phys.Rev.Lett. 110(21) 211301, (2013). arXiv:1302.5265 [gr-qc]

  12. S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J. Bekenstein, Black holes and the second law. Lett. Nuovo Cimento Soc. Ital. Fis. 4, 737–740 (1972)

    Article  ADS  Google Scholar 

  14. W.G. Unruh, R.M. Wald, What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047–1056 (1984)

    Article  ADS  Google Scholar 

  15. S.D. Mathur, The Information paradox: a pedagogical introduction. Class. Quant. Grav. 26, 224001 (2009). arXiv:0909.1038 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R.B. Mann, T.G. Steele, Thermodynamics and quantum aspects of black holes in (1+1)-dimensions. Class. Quant. Grav. 9, 475–492 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Visser, Thermality of the Hawking flux. JHEP 07, 009 (2015). arXiv:1409.7754 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  18. S.K. Modak, L. Ortiz, I. Pena, D. Sudarsky, Non-Paradoxical loss of information in black hole evaporation in a quantum collapse model. Phys. Rev. D 91(12), 124009 (2015). arXiv:1408.3062 [gr-qc]

  19. S. L. Adler, A.C. Millard, Generalized quantum dynamics as prequantum mechanics. Nucl. Phys. B 473(199–244) (1996). arXiv:hep-th/9508076 [hep-th]

  20. A. Bassi, G.C. Ghirardi, Dynamical reduction models. Phys. Rept. 379, 257 (2003). arXiv:quant-ph/0302164 [quant-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013). arXiv:1204.4325 [quant-ph]

    Article  ADS  Google Scholar 

  22. S.D. Mathur, Tunneling into fuzzball states. Gen. Rel. Grav. 42, 113–118 (2010). arXiv:0805.3716 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Chakraborty, S. Singh, T. Padmanabhan, A quantum peek inside the black hole event horizon. JHEP 1506, 192 (2015). arXiv:1503.01774 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Singh, S. Chakraborty, Black hole kinematics: The âinâ- vacuum energy density and flux for different observers. Phys.Rev. D 90(2), 024011 (2014). arXiv:1404.0684 [gr-qc]

  25. C.M. DeWitt, D. Rickles, The Role Of Gravitation In Physics: Report From The 1957 Chapel Hill Conference, vol. 5. epubli, 2011

    Google Scholar 

  26. M. Albers, C. Kiefer, M. Reginatto, Measurement analysis and quantum gravity. Phys. Rev. D 78, 064051 (2008). arXiv:0802.1978 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Carlip, Is quantum gravity necessary? Class. Quant. Grav. 25, 154010 (2008). arXiv:0803.3456 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. G. ’t Hooft, An algorithm for the poles at dimension four in the dimensional regularization procedure. Nucl.Phys. B 62(444–460) (1973)

    Google Scholar 

  29. G. ’t Hooft, M. Veltman, One loop divergencies in the theory of gravitation. Ann. Poincare Phys.Theor. A 20(69–94) (1974)

    Google Scholar 

  30. S. Deser, P. van Nieuwenhuizen, One loop divergences of quantized Einstein-Maxwell fields. Phys. Rev. D 10, 401 (1974)

    Article  ADS  Google Scholar 

  31. S. Deser, P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system. Phys. Rev. D 10, 411 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  32. M.H. Goroff, A. Sagnotti, The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266(3), 709–736 (1986)

    Google Scholar 

  33. S. de Haro, D. Dieks, E. Verlinde et al., Forty years of string theory reflecting on the foundations. Found. Phys. 43(1), 1–7 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. C. Rovelli, L. Smolin, Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442(3), 593–619 (1995)

    Google Scholar 

  35. D.Z. Freedman, A. Van Proeyen, Supergravity (Cambridge University Press, 2012)

    Google Scholar 

  36. G. Esposito, A. Y. Kamenshchik, G. Pollifrone, Euclidean Quantum Gravity On Manifolds With Boundary, vol. 85. (Springer Science & Business Media, 1997)

    Google Scholar 

  37. R. D. Sorkin, Causal sets: Discrete gravity in Lectures on quantum gravity, 305–327. Springer, 2005

    Google Scholar 

  38. J. Ambjorn, A. Goerlich, J. Jurkiewicz, R. Loll, Quantum gravity via causal dynamical triangulations. arXiv:1302.2173 [hep-th]

  39. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Google Scholar 

  40. J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292–3300 (1974)

    Google Scholar 

  41. J.M. Bardeen, B. Carter, S. Hawking, The Four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    Google Scholar 

  42. S. Hawking, Black Holes and Thermodynamics. Phys. Rev. D 13, 191–197 (1976)

    Google Scholar 

  43. R.M. Wald, The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001). arXiv:gr-qc/9912119 [gr-qc]

  44. T. Padmanabhan, Gravity and the thermodynamics of horizons. Phys.Rept. 406(49–125) (2005). arXiv:gr-qc/0311036 [gr-qc]

  45. G.T. Horowitz, Quantum states of black holes. arXiv:gr-qc/9704072 [gr-qc]

  46. C. Rovelli, Loop quantum gravity: the first twenty five years. Class. Quant. Grav. 28, 153002 (2011). arXiv:1012.4707 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  47. A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation. Gen. Relativ. Gravit. 32(2), 365–367 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation. Sov. Phys.-Dokl. 12, 1040–1041 (1968)

    ADS  Google Scholar 

  49. T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rept. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

    Article  ADS  Google Scholar 

  50. T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric space-times. Class.Quant.Grav. 19(5387–5408) (2002). arXiv:gr-qc/0204019 [gr-qc]

  51. R.-G. Cai, S.P. Kim, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. JHEP 0502, 050 (2005). arXiv:hep-th/0501055 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Paranjape, S. Sarkar, T. Padmanabhan, Thermodynamic route to field equations in Lancos-Lovelock gravity. Phys. Rev. D 74, 104015 (2006). arXiv:hep-th/0607240 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Akbar and R.-G. Cai, Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 635(7–10) (2006). arXiv:hep-th/0602156 [hep-th]

  54. T. Padmanabhan, Dark energy: mystery of the millennium. AIP Conf. Proc. 861(179–196) (2006). arXiv:astro-ph/0603114 [astro-ph]. [,179(2006)]

  55. D. Kothawala, T. Padmanabhan, Thermodynamic structure of Lanczos-Lovelock field equations from near-horizon symmetries. Phys. Rev. D 79, 104020 (2009). arXiv:0904.0215 [gr-qc]

    Article  ADS  Google Scholar 

  56. T. Padmanabhan, A. Paranjape, Entropy of null surfaces and dynamics of spacetime. Phys. Rev. D 75, 064004 (2007). arXiv:gr-qc/0701003 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  57. T. Padmanabhan, Dark energy and gravity. Gen.Rel.Grav. 40(529–564) (2008). arXiv:0705.2533 [gr-qc]

  58. T. Padmanabhan, Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Mod. Phys. Lett. A 25(1129–1136) (2010). arXiv:0912.3165 [gr-qc]

  59. T. Padmanabhan, Surface density of spacetime degrees of freedom from equipartition law in theories of gravity. Phys. Rev. D 81, 124040 (2010). arXiv:1003.5665 [gr-qc]

    Article  ADS  Google Scholar 

  60. T. Padmanabhan, Holographic gravity and the surface term in the Einstein-Hilbert action. Braz.J.Phys. 35(362–372) (2005). arXiv:gr-qc/0412068 [gr-qc]

  61. A. Mukhopadhyay, T. Padmanabhan, Holography of gravitational action functionals. Phys. Rev. D 74, 124023 (2006). arXiv:hep-th/0608120

    Article  ADS  MathSciNet  Google Scholar 

  62. S. Kolekar, T. Padmanabhan, Holography in action. Phys. Rev. D 82, 024036 (2010). arXiv:1005.0619 [gr-qc]

    Article  ADS  Google Scholar 

  63. T. Damour, Surface effects in black hole physics in Proceedings of the Second Marcel Grossmann Meeting on General Relativity (1982)

    Google Scholar 

  64. K.S. Thorne, R.H. Price D.A. MacDonald, Black Holes: The Membrane Paradigm. (Yale University Press, 1986)

    Google Scholar 

  65. T. Padmanabhan, Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces. Phys. Rev. D 83, 044048 (2011). arXiv:1012.0119 [gr-qc]

    Article  ADS  Google Scholar 

  66. S. Kolekar, T. Padmanabhan, Action principle for the fluid-gravity correspondence and emergent gravity. Phys. Rev. D 85, 024004 (2012). arXiv:1109.5353 [gr-qc]

    Article  ADS  Google Scholar 

  67. S. Kolekar, D. Kothawala, T. Padmanabhan, Two aspects of black hole entropy in Lanczos-Lovelock models of gravity. Phys. Rev. D 85, 064031 (2012). arXiv:1111.0973 [gr-qc]

    Article  ADS  Google Scholar 

  68. G. Gibbons, S. Hawking, Action integrals and partition functions in quantum gravity. Phys. Rev. D 15, 2752–2756 (1977)

    Article  ADS  Google Scholar 

  69. K. Parattu, B.R. Majhi, T. Padmanabhan, Structure of the gravitational action and its relation with horizon thermodynamics and emergent gravity paradigm. Phys. Rev. D 87124011, (Jun, 2013). arXiv:gr-qc/1303.1535 [gr-qc], doi:10.1103/PhysRevD.87.124011

  70. T. Padmanabhan, H. Padmanabhan, CosMIn: the solution to the cosmological constant problem. Int. J. Mod. Phys. D 22, 1342001 (2013). arXiv:1302.3226 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  71. T. Padmanabhan, H. Padmanabhan, Cosmological Constant from the Emergent Gravity Perspective. Int. J. Mod. Phys. D 23(6), 1430011 (2014). arXiv:1404.2284 [gr-qc]

  72. T. Padmanabhan, General relativity from a thermodynamic perspective. Gen. Rel. Grav. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. L.J. Garay, Quantum gravity and minimum length. Int. J. Mod. Phys. A 10(145–166), (1995). arXiv:gr-qc/9403008 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chakraborty, S. (2017). It Is All About Gravity. In: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63733-4_1

Download citation

Publish with us

Policies and ethics