Impacts of Bleaching and Varnishing Process on the Amount of CO2 in Scotch Pine (Pinus sylvestris Lipsky) Wood Material

  • Musa Atar
  • Hamza Çınar
  • Hakan Keskin
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 6)


This study was carried out to determine the effects of bleaching and varnishing process on the amount of CO2 in Scotch pine (Pinus sylvestris Lipsky) wood material. For this purpose, samples of Scotch pine wood prepared according to ASTM D 358 [1] contain 18% R1 = (NaOH + H2O2), R2 = (NaOH + Ca(OH)2 + H2O2), R3 = (Na2S2O5 + H2C2O4), R4 = (NaSiO3 + H2O2), R5 = (KMnO4 + Na2S2O5 + H2O2) solution groups, after bleaching with solution groups, water based (Sb), synthetic (Sn), polyurethane (Pu) and acrylic varnish (Av) were applied according to ASTM D 3023 [3] and compliance with ASTM E 160-50 guidelines in combustion tests. Gas measurements were made with the SIGMA 74,172 NSU flue gas device during the combustion process. As a result, the amount of CO2 in the flame source combustion (ppm); The highest R1 (8.500), the lowest R3 (2.907), the highest R1 in the varnish level (5.314), the lowest Pu (2.853) Av (14.773) and lowest R2 + Sv (0.633) were obtained. The amount of CO2 in without flame combustion temperature (ppm); the highest values were Sb (6.686), the lowest Pu (5.419), the highest R1 (9.367) and the lowest R3 (5.407) Sb (19.43) and lowest R3 + Sv (1.167). Baking combustion CO2 content (ppm); the highest Pu (5.127) at the varnish level, the lowest at Sv (2.522), the bleaching materials at the level is highest at R1 (5.980), lowest at R4 (2.180), according to bleaching materials and the varnish type interaction is the highest R1 + P (15.29), also the lowest R5 Av + (0.7833) was obtained. Accordingly, the highest results in terms of the amount of CO2 in the Scotch pine wood were found in the water-based varnish with the R1 solution.


CO2 Combustion Bleaching Varnish Scotch pine wood 


  1. 1.
    ASTM D 358 (1998) Standard specification for wood to be used as panels in weathering tests of coatings. ASTM, 5–9Google Scholar
  2. 2.
    ASTM E 160-50 (1975) Standard test method for combustible properties of treated wood by the crib test. ASTMGoogle Scholar
  3. 3.
    ASTM D 3023 (1998) Standard practice for determination of resistance of factory applied coatings on wood products to stains and reagents. ASTM, 1–3Google Scholar
  4. 4.
    Atar M (1999) Renk açıcı kimyasal maddelerin ağaç malzemede üstyüzey işlemlerine etkileri, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 1, 3–5, 16–17Google Scholar
  5. 5.
    Carving R (1982) Bleaching, bleaching wood. The Furniture Refinisher’s GuideGoogle Scholar
  6. 6.
    Gerard MC (1983) Furniture finishing processes and systems. Finishing Eastern Hardwoods, Madison, 41Google Scholar
  7. 7.
    Highley TL, Kicle TK (1990) Biological degradation of wood. Phytopathology 69:1151–1157CrossRefGoogle Scholar
  8. 8.
    Jackson A (1997) Wood complete, worker’s manual, finishing wood, bleaching and staining. 11:286, 287Google Scholar
  9. 9.
    Keskin H, Tekin A (2011) Abrasion resistances of cellulosic, synthetic, polyurethane, waterborne and acidhardening varnishes used woods. Constr Build Mater 25(2):638–643CrossRefGoogle Scholar
  10. 10.
    Keskin H, Atar M (2011) Impacts of impregnation with imersol aqua to red colour tone of some softwoods and varnishes. Pigm Resin Technol 40(5):298–304Google Scholar
  11. 11.
    Ors Y, Keskin H (2008) Ağaç malzeme teknolojisi. Gazi Üniversitesi Yayın No: 2001–352, AnkaraGoogle Scholar
  12. 12.
    Peker H, Tan H (2004) Bazı Emprenye Maddelerinin Ladin Odununun Yanma Özelliklerine Etkileri. F.Ü. Fen-Müh.Bil.Der., 16(1):163–175Google Scholar
  13. 13.
    TS 2471 (1976) ‘Odunda Fiziksel ve Mekaniksel Deneyler İçin Rutubet Miktarı Tayini, T.S.E., Ankara, 1–3Google Scholar
  14. 14.
    TS 53 (1981) Odunun fiziksel özelliklerini tayin için numune alma, muayene ve deney metotları, TSE, 1–5Google Scholar
  15. 15.
    TS 1476 (1984) Odunda Fiziksel ve Mekanik Özelliklerin Tayini için Homojen Meşçerelerden Numume Ağacı ve Laboratuvar Numunesi Alınması, TSEGoogle Scholar
  16. 16.
    Uysal B (1997) Çeşitli kimyasal maddelerin ağaç malzemenin yanmaya dayanıklılığı üzerine etkileri. Doktora Tezi, Gazi Üniversitesi Fen Bil. Enst., 6, 8, 9, 23–26Google Scholar
  17. 17.
    Uysal B (1998) Çesitli su itici ve yangın geciktirici kimyasal maddelerin kızılağaç odununun yanma özellikleri, ZKÜ. Teknol Derg 2:81–89Google Scholar
  18. 18.
    Uysal B, Atar M, Özçifci A (1999) Renk açıcı kimyasal maddelerin ahşap malzemenin eğilme direnci üzerine etkileri. Tübitak Türk Tarım Orman Derg 23:615–619Google Scholar
  19. 19.
    Uysal B, Kurt Ş (2006) Bazı kimyasallarla emprenye edilmiş ve PF ve PVAc tutkalı ile yapıştırılan lamine ağaç malzemelerin yanma özellikleri. Doğuş Üniv Derg 7–1:112–126Google Scholar
  20. 20.
    Wagner HW, Kiclighter EC (1986) Finisher and finishing, bleaching and disassembly. Mod Woodwork, USA, pp 169–170Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Wood Products Industrial Engineering, Faculty of TechnologyGazi UniversityBesevlerTurkey

Personalised recommendations