Advertisement

Using Waste Concretes as Recycling Aggregate in Concrete Production and Sustainability

  • Can Demirel
  • Osman Şimşek
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 6)

Abstract

Protecting natural sources is an important responsibility for the whole world. Concrete is the most widespread construction material, as a result of its production, natural sources are running out, and also natural environment is being disturbed. In addition, building wastes brought about by the renovation activities for the structures that have expired. In order to maintain the ecological balance, using the available sources wisely and efficiently is crucial. In this study, known class and age of waste concrete is used as coarse and fine aggregates as production of concrete. There are two types of aggregates are used in concrete production as 0–4 and 4–22.4 sizes. These aggregates groups are replaced with normal aggregates as 0, 10, 20, 30, 40, 50 and 100% ratios in concrete. Compressive strength of concrete specimens are determined as 28 and 90 days coring regime. According to the experimental results, it has been seen that recycled aggregates may be used in concrete production and that they may shed light in the production of sustainable concrete.

Keywords

Sustainable concrete Waste concrete Recycled aggregate Compressive strength 

References

  1. 1.
    ERMCO Haber (2012) Haber Bülteni 2/2011 Sayfa 1, Türkiye Hazır Beton Birliği, İstanbulGoogle Scholar
  2. 2.
    World Business Council for Sustainable Development, The Cement Sustainability Initiative (2012) Recycling concrete-executive summary. http://www.wbcsd.org/home.aspx, http://wbcsdcement.org/pdf/CSI-RecyclingConcrete-Summary.pdf, Annual review
  3. 3.
    Öztürk M (2005) İnşaat Yıkıntı Atıkları Yönetimi. Çevre ve Orman Bakanlığı, AnkaraGoogle Scholar
  4. 4.
    Esin T, Coşgun N (2004) Betonarme Yapım Sistemlerinin Ekolojik Açıdan Değerlendirilmesi. 2. Ulusal Yapı Malzemesi Kongresi, EkimGoogle Scholar
  5. 5.
    Gürer C, Akbulut H, Kürklü G (2004) İnşaat Endüstrisinde Geri Dönüşüm ve Bir Hammadde Kaynağı Olarak Farklı Yapı Malzemelerinin Yeniden Değerlendirilmesi. V.Endüstriyel Hammaddeler Sempozyumu, ss. 28–36, 13–14 Mayıs, İzmirGoogle Scholar
  6. 6.
    Demirel C, Şimşek O (2015) Erken Yaşdaki Atık Betonların Geri Dönüşüm Agregası Olarak Beton Üretiminde Kullanılabilirliği Ve Sürdürülebilirlik Açısından İncelenmesi. S.Ü. Müh. Bilim ve Tekn. Derg. 3:226–235Google Scholar
  7. 7.
    Durmuş G, Şimşek O, ve Dayı M (2009) ‘Geri Dönüşümlü İri Agregaların Beton Özelliklerine Etkisi. Gazi Üniv. Müh. Mim. Fak. Der. 24(1):183–189Google Scholar
  8. 8.
    Özturan T (1988) Eski Beton Kırığı Agregalı Betonlar. İ.T.Ü. İnşaat Fakültesi, Yapı Malzemesi Seminerleri, İstanbulGoogle Scholar
  9. 9.
    Köken A, ve Köroğlu MA (2008) Atık betonların beton agregası olarak kullanılabilirliği. J Tech-Online 7(1)Google Scholar
  10. 10.
    Günçan NF (1995) Eski Beton Kırığı Agregalı Betonların Fiziksel ve Mekanik Özellikleri. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Osmangazi ÜniversitesiGoogle Scholar
  11. 11.
    TS EN 933–1 (2012) Tests for geometrical properties of aggregates—Part 1: Determination of particle size distribution—Sieving method. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  12. 12.
    TS EN 1097–6 (2013) Tests for mechanical and physical properties of aggregates—Part 6: Determination of particle density and water absorption. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  13. 13.
    TS EN 1097–2 (2016) Tests for mechanical and physical properties of aggregates—Part 2: Methods for the determination of resistance to fragmentation. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  14. 14.
    TS EN 933-3 (2012) Tests for geometrical properties of Aggregates—Part 3: Determination of particle shape—Flakiness index. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  15. 15.
    TS. 802 (2016) Design of concrete mixes. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  16. 16.
    TS EN 206 (2014) Concrete—Specification, performance, production and conformity. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  17. 17.
    TS EN 12350–2 (2010) Testing fresh concrete—Part 2: Slump test. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  18. 18.
    TS EN 12390–3 (2010) Testing hardened concrete—Part 3: Compressive strength of test specimens. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  19. 19.
    TS 500. Betonarme Yapıların Hesap ve Yapım Kuralları. Türk Standartları Enstitüsü, AnkaraGoogle Scholar
  20. 20.
    Şimşek O (2013) Beton Bileşenleri ve Beton Deneyleri. Seçkin Yayıncılık 4. Baskı, Ankara, 1–384Google Scholar
  21. 21.
    Şimşek O (2010) Beton Bileşenleri ve Beton Deneyleri. Seçkin Yayıncılık 4. Baskı, Ankara, 1–384Google Scholar
  22. 22.
    Demirel C, Şimşek O (2014) C30 Sınıfı Atık Betonun Geri Dönüşüm Agregası Olarak Beton Üretiminde Kullanılabilirliği. Düzce Üni. Bilim ve Tekn. Derg. c.2, s.2, 46–54Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Construction Department, Pinarhisar Vocational SchoolKırklareli UniversityKırklareliTurkey
  2. 2.Faculty of TechnologyGazi UniversityAnkaraTurkey

Personalised recommendations