Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 415 Accesses

Abstract

In this thesis, I experimentally tested several fundamental relationships that describe the thermodynamics of information for systems in contact with a single thermal reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Jun, M. Gavrilov, J. Bechhoefer, High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 190601 (2014)

    Article  ADS  Google Scholar 

  2. M. Gavrilov, J. Bechhoefer, Erasure without work in an asymmetric, double-well potential. Phys. Rev. Lett. 117, 200601 (2016)

    Google Scholar 

  3. Y. Jun, J. Bechhoefer, Virtual potentials for feedback traps. Phys. Rev. E 86, 061106 (2012)

    Article  ADS  Google Scholar 

  4. T. Schmiedl, U. Seifert, Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98, 108301 (2007)

    Google Scholar 

  5. D. Abreu, U. Seifert, Extracting work from a single heat bath through feedback. EPL (Europhys. Lett.) 94(1), 10001 (2011)

    Article  ADS  Google Scholar 

  6. Michael Bauer, David Abreu, Udo Seifert, Efficiency of a Brownian information machine. J. Phys. A: Math. Theor. 45(16), 162001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Thermodynamics of information. Nature Phys., (2015)

    Google Scholar 

  8. P.R. Zulkowski, M.R. DeWeese, Optimal finite-time erasure of a classical bit. Phys. Rev. E 89, 052140 (2014)

    Google Scholar 

  9. E. Aurell, K. Gawȩdzki, C. Mejía-Monasterio, R. Mohayaee, P. Muratore-Ginanneschi, Refined second law of thermodynamics for fast random processes. J. Stat. Phys. 147, 487–505 (2012)

    Google Scholar 

  10. V. Demergis, E-L. Florin, High precision and continuous optical transport using a standing wave optical line trap. Opt. Express 19(21), 20833–20848 (2011)

    Google Scholar 

  11. J. Mehl, V. Blickle, U. Seifert, C. Bechinger, Experimental accessibility of generalized fluctuation-dissipation relations for nonequilibrium steady states. Phys. Rev. E 82, 032401 (2010)

    Google Scholar 

  12. J.R. Gomez-Solano, A. Petrosyan, S. Ciliberto, Finite sampling effects on generalized fluctuation-dissipation relations for steady states. J. Phys: Conf. Ser. 297(1), 012006 (2011)

    Google Scholar 

  13. V. Blickle, T. Speck, C. Lutz, U. Seifert, C. Bechinger, Einstein relation generalized to nonequilibrium. Phys. Rev. Lett. 98, 210601 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A.P. Fields, A.E. Cohen, Electrokinetic trapping at the one nanometer limit. PNAS 108, 8937–8942 (2011)

    Article  ADS  Google Scholar 

  15. Q. Wang, W.E. Moerner, Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap. Appl. Phys. B 99, 23–30 (2010)

    Article  ADS  Google Scholar 

  16. A. Weigel, A. Sebesta, P. Kukura, Dark field microspectroscopy with single molecule fluorescence sensitivity. ACS Photonics 1, 848–856 (2014)

    Article  Google Scholar 

  17. J.O. Arroyo, P. Kukura, Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy. Nature Photon. 10(1), 11–17 (2016). Progress Article

    Google Scholar 

  18. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Landauer, The physical nature of information. Phys. Lett. A 217(4), 188–193 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momčilo Gavrilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gavrilov, M. (2017). Conclusion. In: Experiments on the Thermodynamics of Information Processing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63694-8_9

Download citation

Publish with us

Policies and ethics