Skip to main content

Erasure Without Work in an Asymmetric, Double-Well Potential

  • Chapter
  • First Online:
Experiments on the Thermodynamics of Information Processing

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Here, we present an experimental study of erasure for a memory encoded in an asymmetric double-well potential. Using a feedback trap, we find that the average work to erase can be less than \(kT\ln 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such a change is done with a single harmonic trap and should not be confused with the work needed to erase memory (Landauer limit).

References

  1. M. Gavrilov, J. Bechhoefer, Erasure without work in an asymmetric, double-well potential. Phys. Rev. Lett. 117, 200601 (2016)

    Article  ADS  Google Scholar 

  2. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Sagawa, Thermodynamic and logical reversibilities revisited. J. Stat. Mech., P03025 (2014)

    Google Scholar 

  4. J.C. Maxwell, Theory of Heat (Green, and Co., Longmans, 1871)

    Google Scholar 

  5. L. Szilard, On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Z. Physik 53, 840–856 (1929)

    Article  ADS  Google Scholar 

  6. C.H. Bennett, The thermodynamics of computation: a review. Int. J. Theor. Phys. 21, 905–940 (1982)

    Article  Google Scholar 

  7. H.S. Leff, A.F. Rex, Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing (IOP, Bristol, 2003)

    Google Scholar 

  8. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–190 (2012)

    Article  ADS  Google Scholar 

  9. Y. Jun, M. Gavrilov, J. Bechhoefer, High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 190601 (2014)

    Article  ADS  Google Scholar 

  10. J. Hong, B. Lambson, S. Dhuey, J. Bokor, Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits. Sci. Adv. 2, e1501492 (2016)

    Article  ADS  Google Scholar 

  11. L. Martini, M. Pancaldi, M. Madami, P. Vavassori, G. Gubbiotti, S. Tacchi, F. Hartmann, M. Emmerling, S. Höfling, L. Worschech, G. Carlotti, Experimental and theoretical analysis of Landauer erasure in nano-magnetic switches of different sizes. Nano Energy 19, 108–116 (2016)

    Article  Google Scholar 

  12. J.P.S. Peterson, R.S. Sarthour, A.M. Souza, I.S. Oliveira, J. Goold, K. Modi, D.O. Soares-Pinto, L.C. Céleri, Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit, in Proceeding of Royal Society A, vol. 472, p. 2015.0813 (2016)

    Google Scholar 

  13. K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010)

    Google Scholar 

  14. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(126001), 1–58 (2012)

    Google Scholar 

  15. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. (2015)

    Google Scholar 

  16. S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988 (2010)

    Article  Google Scholar 

  17. J.V. Koski, V.F. Maisi, J.P. Pekola, D.V. Averin, Experimental realization of a Szilard engine with a single electron. PNAS 111, 13786–13789 (2014)

    Article  ADS  Google Scholar 

  18. J.V. Koski, A. Kutvonen, I.M. Khaymovich, T. Ala-Nissila, J.P. Pekola, On-chip Maxwell’s demon as an information-powered refrigerator. Phys. Rev. Lett. 115, 260602 (2015)

    Article  ADS  Google Scholar 

  19. A. Patrice, Camati, John P. S. Peterson, Tiago B. Batalhão, Kaonan Micadei, Alexandre M. Souza, Roberto S. Sarthour, Ivan S. Oliveira, and Roberto M. Serra. Experimental rectification of entropy production by a Maxwell’s Demon in a quantum system. Phys. Rev. Lett. 117, 240502 (2016)

    Article  Google Scholar 

  20. K. Shizume, Heat generation required by information erasure. Phys. Rev. E 52, 3495–3499 (1995)

    Article  ADS  Google Scholar 

  21. P.N. Fahn, Maxwell’s demon and the entropy cost of information. Found. Phys. 26(1), 71–93 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. M.M. Barkeshli, Dissipationless information erasure and the breakdown of Landauer’s principle (2005), arXiv:0504.323

  23. T. Sagawa, M. Ueda, Minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009)

    Article  ADS  Google Scholar 

  24. S. Turgut, Relations between entropies produced in nondeterministic thermodynamic processes. Phys. Rev. E 79, 041102 (2009)

    Article  ADS  Google Scholar 

  25. T. Sagawa, M. Ueda, Information Thermodynamics: Maxwell’s Demon in Nonequilibrium Dynamics (Wiley, Weinheim, 2013)

    Google Scholar 

  26. A.B. Boyd, J.P. Crutchfield, Maxwell demon dynamics: deterministic chaos, the Szilard map, and the intelligence of thermodynamic systems. Phys. Rev. Lett. 116, 190601 (2016)

    Article  ADS  Google Scholar 

  27. R. Dillenschneider, E. Lutz, Comment on ‘Minimal energy cost for thermodynamic information processing: measurement and information erasure’. Phys. Rev. Lett. 104, 198903 (2010)

    Article  ADS  Google Scholar 

  28. T. Sagawa, M. Ueda, Sagawa and Ueda reply. Phys. Rev. Lett. 104, 198904 (2010)

    Article  ADS  Google Scholar 

  29. H.B. Callen, Thermodynamics and An Introduction to Thermostatistics, 2nd edn. (Wiley, Hoboken, 1985)

    Google Scholar 

  30. M. Gavrilov, J. Bechhoefer, Arbitrarily slow, non-quasistatic, isothermal transformations. EPL (Europhys. Lett.) 114(5), 50002 (2016)

    Article  ADS  Google Scholar 

  31. K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys. Soc. Jap. 66, 1234–1237 (1997)

    Article  ADS  Google Scholar 

  32. D. Chiuchiú, Time-dependent study of bit reset. EPL (Europhys. Lett.) 109(3), 30002 (2015)

    Article  ADS  Google Scholar 

  33. P.R. Zulkowski, M.R. DeWeese, Optimal finite-time erasure of a classical bit. Phys. Rev. E 89, 052140 (2014)

    Article  ADS  Google Scholar 

  34. K. Sekimoto, S. Sasa, Complementarity relation for irreversible process derived from stochastic energetics. J. Phys. Soc. Jap. 66(11), 3326–3328 (1997)

    Article  ADS  Google Scholar 

  35. T. Schmiedl, U. Seifert, Efficiency at maximum power: an analytically solvable model for stochastic heat engines. EPL (Europhys. Lett.), 20003 (2008)

    Google Scholar 

  36. Y. Jun, J. Bechhoefer, Virtual potentials for feedback traps. Phys. Rev. E 86, 061106 (2012)

    Article  ADS  Google Scholar 

  37. M. Gavrilov, Y. Jun, J. Bechhoefer, Real-time calibration of a feedback trap. Rev. Sci. Instrum. 85(9) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momčilo Gavrilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gavrilov, M. (2017). Erasure Without Work in an Asymmetric, Double-Well Potential. In: Experiments on the Thermodynamics of Information Processing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63694-8_5

Download citation

Publish with us

Policies and ethics