Skip to main content

Feedback Trap

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Feedback traps can create arbitrary virtual potentials for exploring the dynamics of small Brownian particles. In a feedback trap, the particle position is measured periodically and, after each measurement, one applies the force that would be produced by the gradient of the “virtual potential,” at the particle location. Virtual potentials differ from real ones in that the feedback loop introduces dynamical effects not present in ordinary potentials. These dynamical effects are caused by small time scales associated with the feedback, including the delay between the measurement of a particle’s position and the feedback response, the feedback response that is applied for a finite update time, and the finite camera exposure from integrating motion. Here, we characterize the relevant experimental parameters and compare to theory the observed power spectra and variance for a particle in a virtual harmonic potential. We show that deviations from the dynamics expected of a continuous potential are measured by the ratio of these small time scales to the relaxation time scale of the virtual potential.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Some versions of the feedback trap use a single detector to time photon counts from a rapidly scanned laser beam. For such systems, there is no exposure time, although there continues to be a lag between the photon detection and the response. However, while the effectively instantaneous detection of photons and consequent lack of a finite camera exposure time simplifies some aspects of the dynamics, the Poisson statistics associated with both signal and background and the need to use sophisticated filtering techniques create difficulties of their own [22, 23].

References

  1. A.E. Cohen, W.E. Moerner, Method for trapping and manipulating nanoscale objects in solution. App. Phys. Lett. 86, 093109 (2005)

    Article  ADS  Google Scholar 

  2. A.E. Cohen, W.E. Moerner, Suppressing Brownian motion of individual biomolecules in solution. PNAS 103, 4362–4365 (2006)

    Article  ADS  Google Scholar 

  3. A.E. Cohen, Control of nanoparticles with arbitrary two-dimensional force fields. Phys. Rev. Lett. 94, 118102 (2005)

    Article  ADS  Google Scholar 

  4. Q. Wang, W.E. Moerner, Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat. Methods 11(5), 556–558 (2014)

    Article  Google Scholar 

  5. A.E. Cohen, W.E. Moerner, Principal-components analysis of shape fluctuations of single DNA molecules. PNAS 104, 12622–12627 (2007)

    Article  ADS  Google Scholar 

  6. R.H. Goldsmith, W.E. Moerner, Watching conformational- and photodynamics of single fluorescent proteins in solution. Nature Chem. 2(179–186) (2010)

    Google Scholar 

  7. A.P. Fields, A.E. Cohen, Electrokinetic trapping at the one nanometer limit. PNAS 108, 8937–8942 (2011)

    Article  ADS  Google Scholar 

  8. J.A. Germann, L.M. Davis, Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope. Opt. Express 22, 5641–5650 (2014)

    Article  ADS  Google Scholar 

  9. M. Kayci, H.-C. Chang, A. Radenovic, Electron spin resonance of nitrogen-vacancy defects embedded in single nanodiamonds in an ABEL trap. Nano Lett. 14, 5335–5341 (2014)

    Article  ADS  Google Scholar 

  10. Y. Jun, J. Bechhoefer, Virtual potentials for feedback traps. Phys. Rev. E 86, 061106 (2012)

    Article  ADS  Google Scholar 

  11. M. Gavrilov, Y. Jun, J. Bechhoefer, Particle dynamics in a virtual harmonic potential. Proc. SPIE. 8810 (2013)

    Google Scholar 

  12. Y. Jun, M. Gavrilov, J. Bechhoefer, High-precision test of Landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 190601 (2014)

    Article  ADS  Google Scholar 

  13. D.Y. Lee, C. Kwon, H.K. Pak, Nonequilibrium fluctuations for a single-particle analog of gas in a soft wall. Phys. Rev. Lett. 114, 060603 (2015)

    Article  ADS  Google Scholar 

  14. M. Gavrilov, J. Koloczek, and J. Bechhoefer. Feedback trap with scattering-based illumination. In Novel Techniques in Microscopy, page JT3A. 4. Opt. Soc. Am., 2015

    Google Scholar 

  15. M. Gavrilov, J. Bechhoefer, Arbitrarily slow, non-quasistatic, isothermal transformations. EPL (Europhys. Lett.) 114(5), 50002 (2016)

    Article  ADS  Google Scholar 

  16. Momčilo Gavrilov, John Bechhoefer, Erasure without work in an asymmetric, double-well potential. Phys. Rev. Lett. 117, 200601 (2016)

    Article  ADS  Google Scholar 

  17. Karel Proesmans, Yannik Dreher, Momčilo Gavrilov, John Bechhoefer, Christian Van den Broeck, Brownian duet: a novel tale of thermodynamic efficiency. Phys. Rev. X 6, 041010 (2016)

    Google Scholar 

  18. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–190 (2012)

    Article  ADS  Google Scholar 

  20. Charlie Gosse, Vincent Croquette, Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002)

    Article  Google Scholar 

  21. A.E. Cohen, Trapping and manipulating single molecules in solution. Ph.D. thesis, Stanford University, 2006

    Google Scholar 

  22. Q. Wang, W.E. Moerner, Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap. Appl. Phys. B 99, 23–30 (2010)

    Article  ADS  Google Scholar 

  23. A.P. Fields, A.E. Cohen, Optimal tracking of a Brownian particle. Opt. Express 20, 22585–22601 (2012)

    Article  ADS  Google Scholar 

  24. A.J. Berglund, M.D. McMahon, J.J. McClelland, J.A. Liddle, Fast, bias-free algorithm for tracking single particles with variable size and shape. Opt. Express 16, 14064–14075 (2008)

    Article  ADS  Google Scholar 

  25. A.E. Cohen, W.E. Moerner, An all-glass microfluidic cell for the ABEL trap: Fabrication and modeling. Proc. SPIE 5930, 191–198 (2005)

    ADS  Google Scholar 

  26. A.E. Cohen, W.E. Moerner, The anti-brownian electrophoretic trap (ABEL trap): fabrication and software. Proc. SPIE 5699, 296–305 (2005)

    Article  ADS  Google Scholar 

  27. S.G. Serra, A. Schneider, K.Malecki, S.E. Huq, W. Brenner, A simple bonding process of SU-8 to glass to seal a microfluidic device, 4M 2007 - Third international Conference on Multi-material Micro Manufacture-Proceedings, (2007), pp. 43–46

    Google Scholar 

  28. G.H. Hardy, E.M. Wright. An Introduction to the Theory of Numbers, 6th edn. (Oxford University Press, 2008)

    Google Scholar 

  29. Kevin McHale, Hideo Mabuchi, Precise characterization of the conformation fluctuations of freely diffusing DNA: beyond Rouse and Zimm. J. Am. Chem. Soc. 131, 17901–17907 (2009)

    Article  Google Scholar 

  30. M. Gavrilov, Y. Jun, J. Bechhoefer. Real-time calibration of a feedback trap. Rev. Sci. Instrum. 85(9), (2014)

    Google Scholar 

  31. A. Weigel, A. Sebesta, P. Kukura, Dark field microspectroscopy with single molecule fluorescence sensitivity. ACS Photonics 1, 848–856 (2014)

    Article  Google Scholar 

  32. Maksymilian. Pluta. Advanced Light Microscopy: Special Methods, vol. 2 (Elsevier, 1989)

    Google Scholar 

  33. P. Lebel, A. Basu, F.C Oberstrass, E.M. Tretter, Z. Bryant, Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat. Methods 11, 456–462 (2014)

    Google Scholar 

  34. J. Koloczek, Non-Fluorescent Particle Imaging For A Feedback Trap, Bachelor Thesis. University Konstanz, 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momčilo Gavrilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gavrilov, M. (2017). Feedback Trap. In: Experiments on the Thermodynamics of Information Processing. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63694-8_2

Download citation

Publish with us

Policies and ethics