Skip to main content

Quantum Inspired Evolutionary Algorithm in Load Frequency Control of Multi-area Interconnected Thermal Power System with Non-linearity

  • Chapter
  • First Online:
Quantum Computing:An Environment for Intelligent Large Scale Real Application

Part of the book series: Studies in Big Data ((SBD,volume 33))

Abstract

Load Frequency Control (LFC) is an important issue in power system to maintain power system stability and quality of generated power supply during sudden load demand period. In order to overcome this issue, power systems are interconnected and secondary controllers are introduced to regulate the power system parameters within a specified limit during sudden load demand period. In this present work, three area single stage reheat thermal power systems are interconnected and each area comprises governor unit, reheated unit, turbine unit, Governor Dead Band (GDB), Generation Rate Constraint (GRC) non-linear components and boiler dynamics effect. One Percent (1%) Step Load Perturbation (SLP) is considered in thermal area 1 of the investigated power system. The Proportional-Integral-Derivative (PID) controller is introduced as a secondary controller. Since tuning of the controller gain values play a vital role, evolutionary algorithms are introduced to tune the controller gain values. In the current work, the Genetic Algorithm (GA), Quantum Inspired Genetic Algorithm (QIGA) and Quantum Inspired Evolutionary Algorithm (QIEA) are proposed for tuning of controller gain values. The cumulative comparisons of the simulation result are clearly reported that QIGA and QIEA are more superior to the GA based PID controller performance in the same investigated power system in terms of time domain specification parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saikia, L.C., Sinha, N., Nanda, J.: Maiden application of bacterial foraging based fuzzy IDD controller in AGC of a multi-area hydrothermal system. Electr. Power Energy Syst. 45, 98–106 (2013)

    Google Scholar 

  2. Debbarma, S., Saikia, L.S., Sinha, N.: AGC of a multi-area thermal system under deregulated environment using a non-integer controller. Electr. Power Syst. Res. 95, 175–183 (2013)

    Google Scholar 

  3. Sahu, R.K., Panda, S., Rout, U.K.: DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity. Electr. Power Energy Syst. 49, 19–33 (2013)

    Google Scholar 

  4. Shabani, H., Vahidi, B., Ebrahimpour, M.: A robust PID controller based on Imperialist competitive algorithm for load frequency control of power systems. ISA Trans. 52, 88–95 (2013)

    Google Scholar 

  5. Ramesh Kumar, S., Ganapathy, S.: Cuckoo Search optimization algorithm based load frequency control of interconnected power systems with GDB nonlinearity and SMES units. Int. J. Eng. Innovations 2(12), 23–28 (2013)

    Google Scholar 

  6. Subha, S.: Load frequency control with fuzzy logic controller considering governor dead band and generation rate constraint non-linearities. World Appl. Sci. J. 29(8), 1059–1066 (2014)

    Google Scholar 

  7. Nanda, J., Sakkaram, J.S.: Automatic generation control with fuzzy logic controller considering generation rate constraint. In: Proceedings of the 6th International Conference on Advances in Power System Control, Operation and Management, APSCOM 2003, Hong Kong, pp. 770–775 (2003)

    Google Scholar 

  8. Swain, A.K., Mohanty, A.K.: Adaptive load frequency control of an interconnected hydro thermal system considering generation rate constraint. J. Inst. Eng. (India) 76, 109–114 (1995)

    Google Scholar 

  9. Parida, M., Nandha, J.: Automatic generation control of a hydro-thermal system in deregulated environment. In: Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of the Eighth International Conference, vol. 2, pp. 942–947 (2005)

    Google Scholar 

  10. Demiroren, A., Sengor, N.S., Lale Zeynelghi, H.: Automatic generation control by using ANN technique. Electr. Power Compon. Syst. 29, 883–896 (2001)

    Google Scholar 

  11. Ngamroo, I.: Robust decentralized frequency stabilizers design for SMES taking into consideration system uncertainties. Electr. Power Energy Syst. 74, 281–292 (2005)

    Google Scholar 

  12. Concordia, C., Kirchmayer, L.K., Szymanski, E.A.: Effect of speed-governor dead band on tie-line power and frequency control performance. IEEE Trans. Power Apparatus Syst. 76(3), 429–434 (1957)

    Article  Google Scholar 

  13. Shayeghi, H., Shayanfor, H.A.: Application of ANN technique based µ-synthesis to load frequency control of interconnected power and energy systems. Electr. Power Energy Syst. 28, 503–511 (2006)

    Article  Google Scholar 

  14. Tripathy, S.C., Balasubramaniam, R., Chandramohan Nair, P.S.: Effect of superconducting magnetic energy storage on automatic generation control considering governor dead and boiler dynamics. IEEE Trans. Power Syst. 7(3), 1266–1273 (1992)

    Article  Google Scholar 

  15. Tripathy, S.C., Hope, G.S., Malik, O.P.: Optimization of load-frequency control parameters for power systems with reheat steam turbines and governor dead band nonlinearity. IEE Proc. 129(1), 10–16 (1982)

    Google Scholar 

  16. Nanda, J., Kothari, M.L., Satsangi, P.S.: Automatic generation control of an interconnected hydrothermal system in continuous and discrete modes considering generation rate constraints. IEE Proc. 130(1), 17–27 (1983)

    Article  MATH  Google Scholar 

  17. Hari, L., Kothari, M.L., Nanda, J.: Optimum selection of speed regulation parameters for automatic generation control in discrete mode considering generation rate constrains. IEE Proc. C 138(4), 401–406 (1991)

    Google Scholar 

  18. Lu, C.-F., Liu, C.-C., Wu, C.-J.: Effect of battery energy storage system on load frequency control considering governor dead band and generation rate constraint. IEEE Trans. Energy Convers. 10(3), 555–561 (1995)

    Google Scholar 

  19. Pan, C.T., Liaw, C.M.: An adaptive controller for power system load-frequency control. IEEE Trans. Power Syst. 4(1), 122–128 (1989)

    Article  Google Scholar 

  20. Nanda, J., Mishra, S., Sailkia, L.C.: Maiden application of bacterial foraging based optimization technique in multi area automatic generation control. IEEE Trans. Power Syst. 24(2), 602–609 (2009)

    Google Scholar 

  21. Nanda, J., Mangla, A., Suri, S.: Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers. IEEE Trans. Energy Convers. 21(1), 187–194 (2006)

    Google Scholar 

  22. Anand, B., Jeyakumar, E.: Fuzzy Logic load frequency Control of hydro-Thermal system with non-Linearities. Int. J. Electr. Power Eng. 3(2), 112–118 (2009)

    Google Scholar 

  23. Nanda, J., Saikia, L.C.: Comparison of performances of several types of classical controller in automatic generation control for an interconnected multi-area thermal system. In: Proceedings of 2008 Australasian Universities Power Engineering Conference (AUPEC’08), pp, 1–6 (2008)

    Google Scholar 

  24. Tripathy, S.C., Bhatti, T.S., Jha, C.S., Malik, O.P., Hope, G.S.: Sampled data automatic generation control analysis with reheat steam turbines and governor dead-band effects. IEE Trans. Power Apparatus Syst. 103(5), 1045–1051 (1984)

    Article  Google Scholar 

  25. Saikia, L.C., Bharali, A., Diixit, O., Malakar, T., Sharma, B., Kouli, S.: Automatic generation control of multi-area hydro system using classical controllers. In: 1st International Conference on Power and Energy in NERIST (ICPEN), 28–29 December 2012, Nirjuli, pp, 1–6 (2012)

    Google Scholar 

  26. Chidambaram, I.A., Velusami, S.: Decentralize biased controllers for load frequency control of interconnected power systems considering governor dead band non-linearity. In: IEEE Indicon 2005, Chennai, India, December 11–13, pp. 521–525 (2005)

    Google Scholar 

  27. Chaine, S., Tripathy, M.: Design of an optimal SMES for automatic generation control of two-area thermal power system using cuckoo search algorithm. J. Electr. Syst. Inf. Technol. (In Press) (2015)

    Google Scholar 

  28. Pan, I., Das, S.: Fractional-order load frequency control of interconnected power systems using chaotic multi-objective optimization. Appl. Soft Comput. 29, 328–344 (2015)

    Google Scholar 

  29. Dash, P., Nidulsinha, L.C.S.: Comparison of performance of several FACTS devices using Cuckoo search algorithm optimized 2DOF controllers in multi-area AGC. Electr. Power Energy Syst. 65, 316–324 (2015)

    Google Scholar 

  30. Dash, P., Saikia, L.C., Sinha, N.: Automatic generation control of multi area thermal system using bat algorithm optimized PD-PID cascade controller. Electr. Power Energy Syst. 68, 364–372 (2015)

    Google Scholar 

  31. Zare, K., Hagh, M.T., Morsali, J.: Effective oscillation damping of an interconnected multi-source power system with automatic generation control and TCSC. Electr. Power Energy Syst. 65, 220–230 (2015)

    Google Scholar 

  32. Sahu, R.K., Panda, S., Padhan, S.: A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems. Electr. Power Energy Syst. 64, 9–23 (2015)

    Google Scholar 

  33. SarojPadhan, R.K., Sahu, S.P.: Application of firefly algorithm for load frequency control of multi-area interconnected power system. Electr. Power Compon. Syst. 42(13), 1419–1430 (2014)

    Google Scholar 

  34. Dash, P., Saikia, L.C., Sinha, N.: Comparison of performances of several Cuckoo search algorithm based 2DOF controllers in AGC of multi-area thermal system. Electr. Power Energy Syst. 55, 429–436 (2014)

    Google Scholar 

  35. Padhan, S., Sahu, R.K., Panda, S.: Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units. Ain Shams Eng. J. 5, 759–774 (2014)

    Google Scholar 

  36. Kothari, M.L., Satsangi, P., Nanda, J.: Sampled-data automatic generation control of interconnected reheat thermal systems considering generation rate constraint. IEEE Trans. Power Apparatus Syst. 100 (5), 2334–2342 (1981)

    Google Scholar 

  37. Fraser, A.S.: Simulation of genetic systems by automatic digital computers. Aust. J. Biol. Sci. 10, 484–491 (1957)

    Article  Google Scholar 

  38. Bremermann, H.J.: Optimization through evolution and recombination in self organizing systems, pp. 93–106. In: Yovits, M.C., Jacobi, G.T., Goldstine, G.D. (eds.). Spartan, Washington, DC (1962)

    Google Scholar 

  39. Holland, J.H.: Adaptation in Natural and Artificial Systems. University Michigan Press, Ann Arbor(1975)

    Google Scholar 

  40. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)

    MATH  Google Scholar 

  41. Rechenberg, I.: Evolutions strategie: Optimierung technischer Systemenach Prinzipien der biologishen Evolution’ Stuttgart. From-mann-Holzbog, Germany (1973)

    Google Scholar 

  42. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, New York (1975)

    MATH  Google Scholar 

  43. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  44. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley Longman, (1989). ISBN 0-201-15767-5

    Google Scholar 

  45. Narayanan, A., Moore, M.: Quantum—inspired genetic algorithms. In: Proceedings of 1996 IEEE International Conference on Evolutionary Computation. Piscataway, pp. 61–66. IEEE Press, NJ (1996)

    Google Scholar 

  46. Hey, T.: Quantum computing: an introduction. Comput. Control Eng. J 10(3), 105–112 (1999). IEEE Press, Piscataway, NJ

    Google Scholar 

  47. da Cruz, A.V.A., Pacheco, M.A.C., Vellasco, M.B.R., Barbosa, C.R.H.: Cultural operators for a quantum-inspired evolutionary algorithm applied to numerical optimization problems. In: Mira, J., Alvarez, J.R. (eds.) IWINAC (2), vol. 3562 of Lecture Notes in Computer Science, pp. 1–10. Springer (2005)

    Google Scholar 

  48. Sharma, M., Tyagi, S.: Novel knowledge based selective tabu initialization in genetic algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(5) (2013)

    Google Scholar 

  49. Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6(6) (2002); Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010)

    Google Scholar 

  50. da Cruz, A.V.A., Vellasco, M.M.B., Pacheco, M.A.C.: Quantum-Inspired Evolutionary Algorithm for Numerical Optimization, pp. 2630–2637 (2006)

    Google Scholar 

  51. Fan, K., Brabazon, A., O’Sullivan, C., O’Neil, M.: Quantum-inspired evolutionary algorithms for financial data analysis. In: Evo Workshops, pp. 133–143 (2008)

    Google Scholar 

  52. Zhang, G., Jin, W., Li, N.: An improved quantum genetic algorithm and its application. Lecture Notes in Computer Science, pp. 449–452 (2003)

    Google Scholar 

  53. Zhao, S., Xu, G., Tao, T., Liang, L.: Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks. Comput. Math. Appl. 57(11–12), 2009–2015 (2009)

    Article  Google Scholar 

  54. Han, K.H., Kim, J.H.: Genetic quantum algorithm and its application to combinatorial optimization problem. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 2, pp. 1354–1360. Citeseer (2000)

    Google Scholar 

  55. Nowotniak, R., Kucharski, J.: Building blocks propagation in quantum-inspired genetic algorithm. Sci. Bull. Acad. Sci. Technol. Automat. 14, 795–810 (2010)

    Google Scholar 

  56. Naidu, K., Mokhlis, H., Bakar, A.H.A., Terzija, V., llias, H.A.: Application of firefly algorithm with online wavelet filter in automatic generation control of an interconnected power reheat thermal power systems. Electr. Power Energy Syst. 63, 401–413 (2014)

    Google Scholar 

  57. Nanda, J., Kaul, B.L.: Automatic generation control of an interconnected power system. Proc. IEE 125(5), 385–390 (1978)

    Google Scholar 

  58. Kothari, M.L., Nanda, J.: Application of optimal control strategy to automatic generation control of a hydrothermal system. IEE Proc. 135(4), 268–274 (1988)

    Google Scholar 

  59. Demiroren, A., Zeynelgil, A.Z., Sengor, N.S.: The application of ANN technique to load frequency control for three-area power systems. In: IEEE Porto Power Tech Conference on 10–13th September, 2006, Portugal

    Google Scholar 

  60. Chidambaram, I.A., Paramasivam, B.: Genetic algorithm based decentralized controller for load-frequency control of interconnected power systems with RFB considering TCPS in the tie-line. Int. J. Electron. Eng. Res. 1, 299–312 (2009)

    Google Scholar 

  61. Ebrahim, M.A., Mostafa, H.E., Gawish, S.A., Bendary, F.M.: Design of decentralized load frequency based-PID controller using stochastic particle swarm optimization technique. In: International Conference on Electric Power and Energy Conversion System, pp. 1–6 (2009)

    Google Scholar 

  62. Arivoli, A., Chidambaram, I.A.: Design of genetic algorithm (GA) based controller for load-frequency control of power systems interconnected with AC-DC tie-line. Int. J. Sci. Eng. Tech. 2, 280–286 (2011)

    Google Scholar 

  63. Ali, E.S., Abd-Elazim, S.M.: Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Electr. Power Energy Syst. 33, 633–638 (2011)

    Google Scholar 

  64. Gozde, H., Cengiz Taplamacioglu, M.: Automatic generation control application with craziness based particle swarm optimization in a thermal power system. Electr. Power Energy Syst. 33, 8–16 (2011)

    Google Scholar 

  65. Gozde, H., Cengiz Taplamacioglu, M., Kocaarslan, I.: Comparative performance analysis of artificial bee colony algorithm in automatic generation control for interconnected reheat thermal power system. Electr. Power Energy Syst. 42, 167–178 (2012)

    Google Scholar 

  66. Saikia, L.C., Sinha, N., Nanda, J.: Maiden application of bacterial foraging based fuzzy IDD controller in AGC of a multi-area hydrothermal system. Electr. Power Energy Syst. 45, 98–106 (2013)

    Google Scholar 

  67. Omar, M., Solimn, M., Abdel Ghany, A.M., Bendary, F.: Optimal tuning of PID controllers for hydrothermal load frequency control using ant colony optimization. Int. J. Electr. Eng. Inform. 5(3), 348–356 (2013)

    Google Scholar 

  68. Jagatheesan, K., Anand, B., Ebrahim, M.A.: Stochastic particle swarm optimization for tuning of PID controller in load frequency control of single area reheat thermal power system. Int. J. Electr. Power Eng. 8(2), 33–40 (2014). ISSN: 1990-7958

    Google Scholar 

  69. Jagatheesan, K., Anand, B.: Automatic generation control of three area hydro-thermal power systems considering electric and mechanical governor with conventional and ant colony optimization technique. Adv. Nat. Appl. Sci. 8(20), 25–33 (2014). ISSN: 1998-1090

    Google Scholar 

  70. Jagatheesan, K., Anand, B.: Performance analysis of double reheat turbine in multi -area AGC system using conventional and ant colony optimization technique. J. Electr. Electron. Eng. 15(1), 1849–1854 (2015)

    Google Scholar 

  71. Jagatheesan, K., Anand, B., Dey, N.: Automatic generation control of thermal-thermal-hydro power systems with PID controller using ant colony optimization. Int. J. Serv. Sci. Manage. Eng. Technol. 6(2), 18–34 (2015)

    Google Scholar 

  72. Jagatheesan, K., Anand, B., Dey, N., Ashour, A.S.: Artificial intelligence in performance analysis of load frequency control in thermal-wind-hydro power systems. Int. J. Adv. Comput. Sci. Appl. 6(7), 203–212 (2015)

    Google Scholar 

  73. Francis, R., Chidambaram, I.A.: Optimized PI+load-frequency controller using BWNN approach for an interconnected reheat power system with RFB and hydrogen electrolyzer units. Electr. Power Energy Syst. 67, 381–392 (2015)

    Google Scholar 

  74. Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Ashour, A.S., Balas, V.E.: Particle swarm optimization based parameters optimization of PID controller for load frequency control of multi-area reheat thermal power systems. Int. J. Artif. Paradigm (Accepted for Publication) (2016)

    Google Scholar 

  75. Jagatheesan, K., Anand, B., Dey, N., Balas, V.E.: Load frequency control of hydro-hydro system with fuzzy logic controller considering non-linearity. In: World Conference on Soft Computing, Berkeley, May 22–25, 2016

    Google Scholar 

  76. Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Santhi, V., Ashiur, A.S., Balas, V.E.: Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with non-linearity. Neural Comput. Appl. (Accepted for Publication), 1–14 (2016)

    Google Scholar 

  77. Jagatheesan, K., Anand, B., Dey, N., Ashour, A.S.: Ant colony optimization algorithm based PID controller for LFC of single area power system with non-linearity and boiler dynamics. World J. Modeling Simul. 12(1), 3–14 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Samanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jagatheesan, K., Samanta, S., Choudhury, A., Dey, N., Anand, B., Ashour, A.S. (2018). Quantum Inspired Evolutionary Algorithm in Load Frequency Control of Multi-area Interconnected Thermal Power System with Non-linearity. In: Hassanien, A., Elhoseny, M., Kacprzyk, J. (eds) Quantum Computing:An Environment for Intelligent Large Scale Real Application . Studies in Big Data, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-63639-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63639-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63638-2

  • Online ISBN: 978-3-319-63639-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics