Skip to main content

Part of the book series: Studies in Big Data ((SBD,volume 33))

Abstract

Quantum cryptography is a robust field of quantum computation and quantum information that focuses on protecting data secrecy by using properties of quantum-mechanical systems. Over the last few years, quantum cryptography has evolved into an emergent high-tech market with companies capable of delivering off-the-shelf products. This chapter introduces a succinct overview of some fundamental concepts of quantum computation, quantum information protocols and their use on the development of quantum cryptography protocols. Key concepts include quantum key distribution, quantum secret sharing, quantum secure direct communication, and deterministic secure quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Google Scholar 

  2. Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002)

    Google Scholar 

  3. IEEE. Rebooting Computing Initiative. http://rebootingcomputing.ieee.org/

  4. von Neumann, J.: Fourth University of Illinois Lecture (Theory of self-reproducing Automata). University of Illinois Press (1966)

    Google Scholar 

  5. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Google Scholar 

  6. Landauer, R.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Google Scholar 

  7. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  8. Mertens, S., Moore, C.: Continuum percolation thresholds in two dimensions. Phys. Rev. E 86, 061109 (2012)

    Google Scholar 

  9. Bennett, H.C., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, J., Kim, M.S.: Entanglement teleportation via werner states. Phys. Rev. Lett. 84(18), 4236–4239 (2000)

    Google Scholar 

  11. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mermin, N.D.: Deconstructing dense coding. Phys. Rev. A. 66, 032308 (2002)

    Article  Google Scholar 

  13. Abd-El-Atty, B., Abd El-Latif, A.A., Amin, M.: New quantum image steganography scheme with Hadamard transformation. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 342–352, Springer International Publishing (2016)

    Google Scholar 

  14. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2015)

    Google Scholar 

  15. Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (LSQb) information hiding algorithm for quantum images. Measurement 73, 352–359 (2015)

    Google Scholar 

  16. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179, Bangalore, India (1984)

    Google Scholar 

  17. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Google Scholar 

  18. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Google Scholar 

  19. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Google Scholar 

  21. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  Google Scholar 

  22. Chen, P., Long, G.L., Deng, F.G.: High-dimension multiparty quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Chin. Phys. B 15, 2228–2235 (2006)

    Google Scholar 

  23. Beige, A., Englert, B.G., Urtsiefer, C.K., Weinfurter, H.: Secure communication with a publicly known key. Acta Physica Polonica A 101(3), 357–368 (2002)

    Google Scholar 

  24. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Google Scholar 

  25. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  Google Scholar 

  26. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Google Scholar 

  27. Yin, X., Ma, W., Shen, D., Hao, C.: Efficient three-party quantum secure direct communication with EPR pairs. Quantum Inf. Sci. 3, 1–5 (2013)

    Google Scholar 

  28. Zhang, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. Chin. Phys. Mech. Astron. 57(7), 1238 (2014)

    Article  Google Scholar 

  29. Man, Z.X., Xia, Y.J., An, N.B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B 39(18), 3855–3863 (2006)

    Google Scholar 

  30. Chang, Y., Zhang, S.B., Yan, L.L.: A bidirectional quantum secure direct communication protocol based on five-particle cluster state. Chin. Phys. Lett. 30, 090301 (2013)

    Article  Google Scholar 

  31. Cao, H.J., Song, H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)

    Article  Google Scholar 

  32. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  Google Scholar 

  33. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358, 256–258 (2006)

    Article  MATH  Google Scholar 

  34. Li, X.H., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)

    Google Scholar 

  35. Quan, D.X., Pei, C.X., Liu, D., Nan, Z.: One-way deterministic secure quantum communication protocol based on single photons. Acta. Phys. Sin. 59, 2493–2497 (2010)

    Google Scholar 

  36. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)

    Google Scholar 

  37. Zhao, G.: Quantum secure communication protocol based on single-photon. Int. J. Sec. Appl. 9(3), 267–274 (2015)

    Google Scholar 

  38. Xin, X., Hua, X., Song, J., Li, F.: Quantum authentication protocol for classical messages based on bell states and hash function. Int. J. Sec. Appl. 9(7), 285–292 (2015)

    Google Scholar 

  39. Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601 (2004)

    Google Scholar 

  40. Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A Math. Gen. 38(25), 5761 (2005)

    Google Scholar 

  41. Shaari, J.S., Lucamarini, M., Wahiddin, M.R.B.: Deterministic six states protocol for quantum communication. Phys. Lett. A 358(2), 85–90 (2006)

    Google Scholar 

  42. Li, X., Deng, F.G., Li, C.Y., Liang, Y.J., Zhou, P., Zhou, H.Y.: Quantum secure direct communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)

    Google Scholar 

  43. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51(9), 2787–2797 (2012)

    Google Scholar 

  44. Yan, C., Shi-Bin, Z., Li-Li, Y., Gui-Hua, H.: Controlled deterministic secure quantum communication protocol based on three-particle GHZ states in X-basis. Commun. Theor. Phys. 63(3), 285–290 (2015)

    Google Scholar 

  45. IID Quantique. http://www.idquantique.com/

  46. IID Quantique. http://www.nucrypt.net/

  47. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information, Cambridge University Press (2000)

    Google Scholar 

  48. Venegas-Andraca, S.E.: Quantum walks and quantum image processing. DPhil Thesis, The University of Oxford (2005)

    Google Scholar 

  49. Andress, J.: The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice, 2nd edn. Elsevier (2014)

    Google Scholar 

  50. Bouwmeester, D.: The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice, 2nd edn. Elsevier (2014)

    Google Scholar 

  51. Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48(3), 351–406

    Google Scholar 

  52. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  Google Scholar 

  53. Loepp, S., Wootters, W., Zurek, W.: Protecting information: from classical error correction to quantum cryptography. Cambridge University Press (2006)

    Google Scholar 

  54. Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Google Scholar 

  55. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)

    Google Scholar 

  56. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Abd El-Latif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Abd-El-Atty, B., Venegas-Andraca, S.E., Abd El-Latif, A.A. (2018). Quantum Information Protocols for Cryptography. In: Hassanien, A., Elhoseny, M., Kacprzyk, J. (eds) Quantum Computing:An Environment for Intelligent Large Scale Real Application . Studies in Big Data, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-63639-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63639-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63638-2

  • Online ISBN: 978-3-319-63639-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics