Skip to main content

On-Demand Controlled Drug Delivery

  • Chapter
  • First Online:
Advances in Personalized Nanotherapeutics

Abstract

Spatial and temporal control of drug delivery is of prime importance for establishing the therapeutic compliance of drugs for various diseases. Conventional approaches to drug delivery for temporal control of drug delivery include encapsulation, entrapment and conjugation to polymeric materials for obtaining the controlled release. Several macro, micro and nanoformulations have been researched and commercialized for producing controlled release of drugs. Apart from the control over the rate of release, a regional delivery would be highly desirable for increasing the efficacy of the drugs and reducing the undue side effects pertaining to the therapy. Some developments in region specific delivery have been utilizing physiological differences of various sites in the body. Topical formulations have been extensively explored for their region specific delivery due to ease of access of these organs like eye, ear, nasal, oral, vaginal and rectal cavities or parts of gastro-intestinal tract like mouth, stomach, intestine and colon. Several sites of the body have not been reached using drug delivery formulations to selectively deliver the drugs to particular organs due to several physiological barriers. Recent developments and approaches in material chemistry, novel polymers, and technology advancements have led to new avenues in the development of nano/micro-carriers or materials for on-demand controlled drug delivery or stimuli responsive drug delivery. On-demand drug release although complex has become possible due to materials which recognize the microenvironments and react in a dynamic way altering properties to cause release of encapsulated drugs within. The current chapter reviews different approaches of developing on-demand drug release using different materials and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429–44. doi:10.1517/17425241003602259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miranda D, Lovell JF. Mechanisms of light-induced liposome permeabilization. Bioeng Transl Med. 2016;1(3):267–76. doi:10.1002/btm2.10032.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Norum OJ, Gaustad JV, Angell-Petersen E, Rofstad EK, Peng Q, Giercksky KE, Berg K. Photochemical internalization of bleomycin is superior to photodynamic therapy due to the therapeutic effect in the tumor periphery. Photochem Photobiol. 2009;85(3):740–9. doi:10.1111/j.1751-1097.2008.00477.x.

    Article  CAS  PubMed  Google Scholar 

  4. Lou PJ, Lai PS, Shieh MJ, Macrobert AJ, Berg K, Bown SG. Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization. Int J Cancer. 2006;119(11):2692–8. doi:10.1002/ijc.22098.

    Article  CAS  PubMed  Google Scholar 

  5. Pashkovskaya A, Kotova E, Zorlu Y, Dumoulin F, Ahsen V, Agapov I, Antonenko Y. Light-triggered liposomal release: membrane permeabilization by photodynamic action. Langmuir. 2010;26(8):5726–33. doi:10.1021/la903867a.

    Article  CAS  PubMed  Google Scholar 

  6. Timko BP, Arruebo M, Shankarappa SA, McAlvin JB, Okonkwo OS, Mizrahi B, Stefanescu CF, Gomez L, Zhu J, Zhu A, Santamaria J, Langer R, Kohane DS. Near-infrared–actuated devices for remotely controlled drug delivery. Proc Natl Acad Sci U S A. 2014;111(4):1349–54. doi:10.1073/pnas.1322651111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T. Development and applications of photo-triggered theranostic agents. Adv Drug Delivery Rev. 2010;62(11):1094–124. doi:10.1016/j.addr.2010.09.002.

    Article  CAS  Google Scholar 

  8. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Delivery Rev. 2006;58(15):1655–70. doi:10.1016/j.addr.2006.09.020.

    Article  CAS  Google Scholar 

  9. Liu F, Kozlovskaya V, Medipelli S, Xue B, Ahmad F, Saeed M, Cropek D, Kharlampieva E. Temperature-sensitive polymersomes for controlled delivery of anticancer drugs. Chem Mater. 2015;27(23):7945–56. doi:10.1021/acs.chemmater.5b03048.

    Article  CAS  Google Scholar 

  10. Geethalakshmi A, Karki R, Sagi P, Jha SK, Venkatesh DP. Temperature triggered in-situ gelling system for betaxolol in glaucoma. J Appl Pharm Sci. 2013;3(2):153–9.

    Google Scholar 

  11. Jung HJ, Chauhan A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials. 2012;33(7):2289–300. doi:10.1016/j.biomaterials.2011.10.076.

    Article  CAS  PubMed  Google Scholar 

  12. Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60(5):1197–201.

    CAS  PubMed  Google Scholar 

  13. Kim MS, Lee D-W, Park K, Park S-J, Choi E-J, Park ES, Kim HR. Temperature-triggered tumor-specific delivery of anticancer agents by cRGD-conjugated thermosensitive liposomes. Colloids Surf, B. 2014;116:17–25. doi:10.1016/j.colsurfb.2013.12.045.

    Article  CAS  Google Scholar 

  14. Deckers R, Moonen CTW. Ultrasound triggered, image guided, local drug delivery. J Controlled Release. 2010;148(1):25–33. doi:10.1016/j.jconrel.2010.07.117.

    Article  CAS  Google Scholar 

  15. Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, Versteilen AM, Paulus WJ, van Gilst WH, Kooiman K, de Jong N, Musters RJ, Deelman LE, Kamp O. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res. 2009;104(5):679–87. doi:10.1161/circresaha.108.183806.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu X, Guo J, He C, Geng H, Yu G, Li J, Zheng H, Ji X, Yan F. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles. Sci Rep. 2016;6:21683. doi:10.1038/srep21683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer. 2007;121(4):901–7. doi:10.1002/ijc.22732.

    Article  CAS  PubMed  Google Scholar 

  18. Jung SH, Na K, Lee SA, Cho SH, Seong H, Shin BC. Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging. Nanoscale Res Lett. 2012;7(1):462. doi:10.1186/1556-276x-7-462.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Song B, Wu C, Chang J. Ultrasound-triggered dual-drug release from poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles electrospun composite fibers. Regenerative Biomater. 2015;2(4):229–37. doi:10.1093/rb/rbv019.

    Article  CAS  Google Scholar 

  20. Kapoor S, Bhattacharyya AJ. Ultrasound-triggered controlled drug delivery and biosensing using silica nanotubes. J Phys Chem C. 2009;113(17):7155–63. doi:10.1021/jp9000863.

    Article  CAS  Google Scholar 

  21. Justin GA, Zhu S, Nicholson TR, Maskrod J, Mbugua J, Chase M, Jung Jh, Mercado RML. On-demand controlled release of anti-inflammatory and analgesic drugs from conducting polymer films to aid in wound healing. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 28 2012-Sept. 1 2012 2012. pp 1206–1209. doi:10.1109/EMBC.2012.6346153.

    Google Scholar 

  22. Samanta D, Hosseini-Nassab N, Zare RN. Electroresponsive nanoparticles for drug delivery on demand. Nanoscale. 2016;8(17):9310–7. doi:10.1039/C6NR01884J.

    Article  CAS  PubMed  Google Scholar 

  23. Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, Xu Z, Gao J, Du Y, Chen Z. Angiopep-conjugated electro-responsive hydrogel nanoparticles: therapeutic potential for epilepsy. Angew Chem Int Ed. 2014;53(46):12436–40. doi:10.1002/anie.201403846.

    CAS  Google Scholar 

  24. Weaver CL, LaRosa JM, Luo X, Cui XT. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano. 2014;8(2):1834–43. doi:10.1021/nn406223e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Servant A, Leon V, Jasim D, Methven L, Limousin P, Fernandez-Pacheco EV, Prato M, Kostarelos K. Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery. Adv Healthcare Mater. 2014;3(8):1334–43. doi:10.1002/adhm.201400016.

    Article  CAS  Google Scholar 

  26. Servant A, Methven L, Williams RP, Kostarelos K. Electroresponsive polymer–carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv Healthcare Mater. 2013;2(6):806–11. doi:10.1002/adhm.201200193.

    Article  CAS  Google Scholar 

  27. Liu Y, Servant A, Guy OJ, Al-Jamal KT, Williams PR, Hawkins KM, Kostarelos K. An electric-field responsive microsystem for controllable miniaturised drug delivery applications. Sensors Actuators B Chem. 2012;175:100–5. doi:10.1016/j.snb.2011.12.069.

    Article  CAS  Google Scholar 

  28. Huang Y-J, Liao H-H, Huang P-L, Wang T, Yang Y-J, Wang Y-H, Lu S-S. An implantable release-on-demand CMOS drug delivery SoC using electrothermal activation technique. J Emerg Technol Comput Syst. 2012;8(2):1–22. doi:10.1145/2180878.2180884.

    Article  Google Scholar 

  29. Deger S, Boehmer D, Türk I, Roigas J, Budach V, Loening SA. Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy. Eur Urol. 2002;42(2):147–53. doi:10.1016/S0302-2838(02)00277-4.

    Article  PubMed  Google Scholar 

  30. Derfus AM, von Maltzahn G, Harris TJ, Duza T, Vecchio KS, Ruoslahti E, Bhatia SN. Remotely triggered release from magnetic nanoparticles. Adv Mater. 2007;19(22):3932–6. doi:10.1002/adma.200700091.

    Article  CAS  Google Scholar 

  31. Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS. A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 2009;9(10):3651–7. doi:10.1021/nl9018935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CSSR, Lvov YM. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir. 2005;21(5):2042–50. doi:10.1021/la047629q.

    Article  CAS  PubMed  Google Scholar 

  33. Bi F, Zhang J, Su Y, Tang Y-C, Liu J-N. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials. 2009;30(28):5125–30. doi:10.1016/j.biomaterials.2009.06.006.

    Article  CAS  PubMed  Google Scholar 

  34. Purushotham S, Ramanujan RV. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2010;6(2):502–10. doi:10.1016/j.actbio.2009.07.004.

    Article  CAS  PubMed  Google Scholar 

  35. Akbarzadeh A, Zarghami N, Mikaeili H, Asgari D, Goganian AM, Khiabani HK, Samiei M, Davaran S. Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol Sci Appl. 2012;5:13–25. doi:10.2147/NSA.S24328.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu L, Kim M-J, Kim K-D, Choa Y-H, Kim H-T. Surface modified Fe3O4 nanoparticles as a protein delivery vehicle. Colloids Surf A Physicochem Eng Asp. 2009;350(1–3):8–12. doi:10.1016/j.colsurfa.2009.08.022.

    Article  CAS  Google Scholar 

  37. Pirmoradi FN, Jackson JK, Burt HM, Chiao M. On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip. 2011;11(16):2744–52. doi:10.1039/C1LC20134D.

    Article  CAS  PubMed  Google Scholar 

  38. Peppas NA, Klier J. Controlled release by using poly(methacrylic acid-g-ethylene glycol) hydrogels. J Controlled Release. 1991;16(1):203–14. doi:10.1016/0168-3659(91)90044-E.

    Article  CAS  Google Scholar 

  39. You Han B, Kun N (2005) pH-sensitive polymers for drug delivery. In: Polymeric drug delivery systems. Drugs and the pharmaceutical sciences. Informa Healthcare, pp 129–194. doi:10.1201/9780849348129.ch3

  40. Yang M, Cui F, You B, Wang L, Yue P, Kawashima Y. A novel pH-dependent gradient-release delivery system for nitrendipine: II. Investigations of the factors affecting the release behaviors of the system. Int J Pharm. 2004;286(1–2):99–109. doi:10.1016/j.ijpharm.2004.08.007.

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen LH, Nagstrup J, Gordon S, Keller SS, Østergaard J, Rades T, Müllertz A, Boisen A. pH-triggered drug release from biodegradable microwells for oral drug delivery. Biomed Microdevices. 2015;17(3):55. doi:10.1007/s10544-015-9958-5.

    Article  Google Scholar 

  42. Balamuralidhara V, Pramodkumar TM, Srujana N, Venkatesh MP, Vishal Gupta NV, Krishna KL, Gangadharappa HV. pH sensitive drug delivery systems: a review. Am J Drug Discov Develop. 2011;1:24–48.

    Article  Google Scholar 

  43. Lu D-x, X-t W, Liang J, X-d Z, Z-w G, Y-j F. Novel pH-sensitive drug delivery system based on natural polysaccharide for doxorubicin release. Chin J Polym Sci. 2008;26(03):369–74. doi:10.1142/S0256767908003023.

    Article  Google Scholar 

  44. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Controlled Release. 2003;91(1–2):103–13. doi:10.1016/S0168-3659(03)00239-6.

    Article  CAS  Google Scholar 

  45. Gillies ER, Jonsson TB, Fréchet JMJ. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc. 2004;126(38):11936–43. doi:10.1021/ja0463738.

    Article  CAS  PubMed  Google Scholar 

  46. Ihre HR, Padilla De Jesús OL, Szoka FC, Fréchet JMJ. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjugate Chem. 2002;13(3):443–52. doi:10.1021/bc010102u.

    Article  CAS  Google Scholar 

  47. Davidsen J, Vermehren C, Frokjaer S, Mouritsen OG, Jørgensen K. Drug delivery by phospholipase A2 degradable liposomes. Int J Pharm. 2001;214(1–2):67–9. doi:10.1016/S0378-5173(00)00634-7.

    Article  CAS  PubMed  Google Scholar 

  48. Anderson JL. Lipoprotein-associated phospholipase A2: an independent predictor of coronary artery disease events in primary and secondary prevention. Am J Cardiol. 2008;101(12):S23–33. doi:10.1016/j.amjcard.2008.04.015.

    Article  Google Scholar 

  49. Park C, Kim H, Kim S, Kim C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. J Am Chem Soc. 2009;131(46):16614–5. doi:10.1021/ja9061085.

    Article  CAS  PubMed  Google Scholar 

  50. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popović Z, Jain RK, Bawendi MG, Fukumura D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A. 2011;108(6):2426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim CS, Duncan B, Creran B, Rotello VM. Triggered nanoparticles as therapeutics. NanoToday. 2013;8(4):439–47. doi:10.1016/j.nantod.2013.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chi C, Zhang Q, Mao Y, Kou D, Qiu J, Ye J, Wang J, Wang Z, Du Y, Tian J. Increased precision of orthotopic and metastatic breast cancer surgery guided by matrix metalloproteinase-activatable near-infrared fluorescence probes. Sci Rep. 2015;5:14197. doi:10.1038/srep14197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R. Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew Chem. 2005;117(26):4129–34. doi:10.1002/ange.200462960.

    Article  Google Scholar 

  54. Bernardos A, Mondragon L, Aznar E, Marcos MD, Martinez-Manez R, Sancenon F, Soto J, Barat JM, Perez-Paya E, Guillem C, Amoros P. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano. 2010;4(11):6353–68. doi:10.1021/nn101499d.

    Article  CAS  PubMed  Google Scholar 

  55. Dzamukova MR, Naumenko EA, Lvov YM, Fakhrullin RF. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep. 2015;5:10560. doi:10.1038/srep10560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang P, Gao Y, Lin J, Hu H, Liao H-S, Yan X, Tang Y, Jin A, Song J, Niu G, Zhang G, Horkay F, Chen X. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano. 2015;9(10):9517–27. doi:10.1021/acsnano.5b03874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Agostini A, Mondragón L, Coll C, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Pérez-Payá E, Amorós P. Dual enzyme-triggered controlled release on capped nanometric silica mesoporous supports. Chemistry Open. 2012;1(1):17–20. doi:10.1002/open.201200003.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, Park JH, Lee SC. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun. 2008;48:6570–2. doi:10.1039/B815918A.

    Article  Google Scholar 

  59. Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal-nanoparticles loaded with TNFα-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater. 2010;9(11):923–8. doi:10.1038/nmat2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc. 2009;131(13):4830–8. doi:10.1021/ja809475a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem. 2011;21(25):9239–47. doi:10.1039/C1JM10631G.

    Article  CAS  Google Scholar 

  62. Bilalis P, Chatzipavlidis A, Tziveleka L-A, Boukos N, Kordas G. Nanodesigned magnetic polymer containers for dual stimuli actuated drug controlled release and magnetic hyperthermia mediation. J Mater Chem. 2012;22(27):13451–4. doi:10.1039/C2JM31392H.

    Article  CAS  Google Scholar 

  63. Wang K, Guo D-S, Wang X, Liu Y. Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano. 2011;5(4):2880–94. doi:10.1021/nn1034873.

    Article  CAS  PubMed  Google Scholar 

  64. Loh XJ, del Barrio J, Toh PPC, Lee T-C, Jiao D, Rauwald U, Appel EA, Scherman OA. Triply triggered doxorubicin release from supramolecular nanocontainers. Biomacromolecules. 2012;13(1):84–91. doi:10.1021/bm201588m.

    Article  CAS  PubMed  Google Scholar 

  65. Furgeson DY, Dreher MR, Chilkoti A. Structural optimization of a “smart” doxorubicin–polypeptide conjugate for thermally targeted delivery to solid tumors. J Controlled Release. 2006;110(2):362–9. doi:10.1016/j.jconrel.2005.10.006.

    Article  CAS  Google Scholar 

  66. Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir. 2009;25(21):12522–8. doi:10.1021/la901776a.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Rahul Dev Jayant would like to acknowledge financial support from Herbert Wertheim College of Medicine Pilot funding grant (# 800008542); The Campbell Foundation grant (# 800008886); and other support from Center for Personalized Nanomedicine (CPNM) and Institute of Neuro-Immune Pharmacology (INIP) from Department of Immunology, Florida International University (FIU). Abhijeet Joshi acknowledges the INSPIRE Faculty award and fellowship provided by Department of Science and Technology, Government of India. Authors would like acknowledge financial support from DBT and SERB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhijeet Joshi or Rahul Dev Jayant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, A., Chaudhari, R., Jayant, R.D. (2017). On-Demand Controlled Drug Delivery. In: Kaushik, A., Jayant, R., Nair, M. (eds) Advances in Personalized Nanotherapeutics . Springer, Cham. https://doi.org/10.1007/978-3-319-63633-7_9

Download citation

Publish with us

Policies and ethics