Advertisement

On-Demand Controlled Drug Delivery

  • Abhijeet JoshiEmail author
  • Rashmi Chaudhari
  • Rahul Dev JayantEmail author
Chapter

Abstract

Spatial and temporal control of drug delivery is of prime importance for establishing the therapeutic compliance of drugs for various diseases. Conventional approaches to drug delivery for temporal control of drug delivery include encapsulation, entrapment and conjugation to polymeric materials for obtaining the controlled release. Several macro, micro and nanoformulations have been researched and commercialized for producing controlled release of drugs. Apart from the control over the rate of release, a regional delivery would be highly desirable for increasing the efficacy of the drugs and reducing the undue side effects pertaining to the therapy. Some developments in region specific delivery have been utilizing physiological differences of various sites in the body. Topical formulations have been extensively explored for their region specific delivery due to ease of access of these organs like eye, ear, nasal, oral, vaginal and rectal cavities or parts of gastro-intestinal tract like mouth, stomach, intestine and colon. Several sites of the body have not been reached using drug delivery formulations to selectively deliver the drugs to particular organs due to several physiological barriers. Recent developments and approaches in material chemistry, novel polymers, and technology advancements have led to new avenues in the development of nano/micro-carriers or materials for on-demand controlled drug delivery or stimuli responsive drug delivery. On-demand drug release although complex has become possible due to materials which recognize the microenvironments and react in a dynamic way altering properties to cause release of encapsulated drugs within. The current chapter reviews different approaches of developing on-demand drug release using different materials and techniques.

Keywords

Stimuli Responsive On-Demand Drug Delivery Controlled Site-Specific 

Notes

Acknowledgements

Rahul Dev Jayant would like to acknowledge financial support from Herbert Wertheim College of Medicine Pilot funding grant (# 800008542); The Campbell Foundation grant (# 800008886); and other support from Center for Personalized Nanomedicine (CPNM) and Institute of Neuro-Immune Pharmacology (INIP) from Department of Immunology, Florida International University (FIU). Abhijeet Joshi acknowledges the INSPIRE Faculty award and fellowship provided by Department of Science and Technology, Government of India. Authors would like acknowledge financial support from DBT and SERB.

References

  1. 1.
    Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429–44. doi: 10.1517/17425241003602259.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Miranda D, Lovell JF. Mechanisms of light-induced liposome permeabilization. Bioeng Transl Med. 2016;1(3):267–76. doi: 10.1002/btm2.10032.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Norum OJ, Gaustad JV, Angell-Petersen E, Rofstad EK, Peng Q, Giercksky KE, Berg K. Photochemical internalization of bleomycin is superior to photodynamic therapy due to the therapeutic effect in the tumor periphery. Photochem Photobiol. 2009;85(3):740–9. doi: 10.1111/j.1751-1097.2008.00477.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Lou PJ, Lai PS, Shieh MJ, Macrobert AJ, Berg K, Bown SG. Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization. Int J Cancer. 2006;119(11):2692–8. doi: 10.1002/ijc.22098.CrossRefPubMedGoogle Scholar
  5. 5.
    Pashkovskaya A, Kotova E, Zorlu Y, Dumoulin F, Ahsen V, Agapov I, Antonenko Y. Light-triggered liposomal release: membrane permeabilization by photodynamic action. Langmuir. 2010;26(8):5726–33. doi: 10.1021/la903867a.CrossRefPubMedGoogle Scholar
  6. 6.
    Timko BP, Arruebo M, Shankarappa SA, McAlvin JB, Okonkwo OS, Mizrahi B, Stefanescu CF, Gomez L, Zhu J, Zhu A, Santamaria J, Langer R, Kohane DS. Near-infrared–actuated devices for remotely controlled drug delivery. Proc Natl Acad Sci U S A. 2014;111(4):1349–54. doi: 10.1073/pnas.1322651111.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T. Development and applications of photo-triggered theranostic agents. Adv Drug Delivery Rev. 2010;62(11):1094–124. doi: 10.1016/j.addr.2010.09.002.CrossRefGoogle Scholar
  8. 8.
    Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Delivery Rev. 2006;58(15):1655–70. doi: 10.1016/j.addr.2006.09.020.CrossRefGoogle Scholar
  9. 9.
    Liu F, Kozlovskaya V, Medipelli S, Xue B, Ahmad F, Saeed M, Cropek D, Kharlampieva E. Temperature-sensitive polymersomes for controlled delivery of anticancer drugs. Chem Mater. 2015;27(23):7945–56. doi: 10.1021/acs.chemmater.5b03048.CrossRefGoogle Scholar
  10. 10.
    Geethalakshmi A, Karki R, Sagi P, Jha SK, Venkatesh DP. Temperature triggered in-situ gelling system for betaxolol in glaucoma. J Appl Pharm Sci. 2013;3(2):153–9.Google Scholar
  11. 11.
    Jung HJ, Chauhan A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials. 2012;33(7):2289–300. doi: 10.1016/j.biomaterials.2011.10.076.CrossRefPubMedGoogle Scholar
  12. 12.
    Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60(5):1197–201.PubMedGoogle Scholar
  13. 13.
    Kim MS, Lee D-W, Park K, Park S-J, Choi E-J, Park ES, Kim HR. Temperature-triggered tumor-specific delivery of anticancer agents by cRGD-conjugated thermosensitive liposomes. Colloids Surf, B. 2014;116:17–25. doi: 10.1016/j.colsurfb.2013.12.045.CrossRefGoogle Scholar
  14. 14.
    Deckers R, Moonen CTW. Ultrasound triggered, image guided, local drug delivery. J Controlled Release. 2010;148(1):25–33. doi: 10.1016/j.jconrel.2010.07.117.CrossRefGoogle Scholar
  15. 15.
    Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, Versteilen AM, Paulus WJ, van Gilst WH, Kooiman K, de Jong N, Musters RJ, Deelman LE, Kamp O. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res. 2009;104(5):679–87. doi: 10.1161/circresaha.108.183806.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhu X, Guo J, He C, Geng H, Yu G, Li J, Zheng H, Ji X, Yan F. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles. Sci Rep. 2016;6:21683. doi: 10.1038/srep21683.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer. 2007;121(4):901–7. doi: 10.1002/ijc.22732.CrossRefPubMedGoogle Scholar
  18. 18.
    Jung SH, Na K, Lee SA, Cho SH, Seong H, Shin BC. Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging. Nanoscale Res Lett. 2012;7(1):462. doi: 10.1186/1556-276x-7-462.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Song B, Wu C, Chang J. Ultrasound-triggered dual-drug release from poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles electrospun composite fibers. Regenerative Biomater. 2015;2(4):229–37. doi: 10.1093/rb/rbv019.CrossRefGoogle Scholar
  20. 20.
    Kapoor S, Bhattacharyya AJ. Ultrasound-triggered controlled drug delivery and biosensing using silica nanotubes. J Phys Chem C. 2009;113(17):7155–63. doi: 10.1021/jp9000863.CrossRefGoogle Scholar
  21. 21.
    Justin GA, Zhu S, Nicholson TR, Maskrod J, Mbugua J, Chase M, Jung Jh, Mercado RML. On-demand controlled release of anti-inflammatory and analgesic drugs from conducting polymer films to aid in wound healing. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 28 2012-Sept. 1 2012 2012. pp 1206–1209. doi:10.1109/EMBC.2012.6346153.Google Scholar
  22. 22.
    Samanta D, Hosseini-Nassab N, Zare RN. Electroresponsive nanoparticles for drug delivery on demand. Nanoscale. 2016;8(17):9310–7. doi: 10.1039/C6NR01884J.CrossRefPubMedGoogle Scholar
  23. 23.
    Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L, Xu Z, Gao J, Du Y, Chen Z. Angiopep-conjugated electro-responsive hydrogel nanoparticles: therapeutic potential for epilepsy. Angew Chem Int Ed. 2014;53(46):12436–40. doi: 10.1002/anie.201403846.Google Scholar
  24. 24.
    Weaver CL, LaRosa JM, Luo X, Cui XT. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano. 2014;8(2):1834–43. doi: 10.1021/nn406223e.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Servant A, Leon V, Jasim D, Methven L, Limousin P, Fernandez-Pacheco EV, Prato M, Kostarelos K. Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery. Adv Healthcare Mater. 2014;3(8):1334–43. doi: 10.1002/adhm.201400016.CrossRefGoogle Scholar
  26. 26.
    Servant A, Methven L, Williams RP, Kostarelos K. Electroresponsive polymer–carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv Healthcare Mater. 2013;2(6):806–11. doi: 10.1002/adhm.201200193.CrossRefGoogle Scholar
  27. 27.
    Liu Y, Servant A, Guy OJ, Al-Jamal KT, Williams PR, Hawkins KM, Kostarelos K. An electric-field responsive microsystem for controllable miniaturised drug delivery applications. Sensors Actuators B Chem. 2012;175:100–5. doi: 10.1016/j.snb.2011.12.069.CrossRefGoogle Scholar
  28. 28.
    Huang Y-J, Liao H-H, Huang P-L, Wang T, Yang Y-J, Wang Y-H, Lu S-S. An implantable release-on-demand CMOS drug delivery SoC using electrothermal activation technique. J Emerg Technol Comput Syst. 2012;8(2):1–22. doi: 10.1145/2180878.2180884.CrossRefGoogle Scholar
  29. 29.
    Deger S, Boehmer D, Türk I, Roigas J, Budach V, Loening SA. Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy. Eur Urol. 2002;42(2):147–53. doi: 10.1016/S0302-2838(02)00277-4.CrossRefPubMedGoogle Scholar
  30. 30.
    Derfus AM, von Maltzahn G, Harris TJ, Duza T, Vecchio KS, Ruoslahti E, Bhatia SN. Remotely triggered release from magnetic nanoparticles. Adv Mater. 2007;19(22):3932–6. doi: 10.1002/adma.200700091.CrossRefGoogle Scholar
  31. 31.
    Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS. A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 2009;9(10):3651–7. doi: 10.1021/nl9018935.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CSSR, Lvov YM. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir. 2005;21(5):2042–50. doi: 10.1021/la047629q.CrossRefPubMedGoogle Scholar
  33. 33.
    Bi F, Zhang J, Su Y, Tang Y-C, Liu J-N. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials. 2009;30(28):5125–30. doi: 10.1016/j.biomaterials.2009.06.006.CrossRefPubMedGoogle Scholar
  34. 34.
    Purushotham S, Ramanujan RV. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2010;6(2):502–10. doi: 10.1016/j.actbio.2009.07.004.CrossRefPubMedGoogle Scholar
  35. 35.
    Akbarzadeh A, Zarghami N, Mikaeili H, Asgari D, Goganian AM, Khiabani HK, Samiei M, Davaran S. Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol Sci Appl. 2012;5:13–25. doi: 10.2147/NSA.S24328.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu L, Kim M-J, Kim K-D, Choa Y-H, Kim H-T. Surface modified Fe3O4 nanoparticles as a protein delivery vehicle. Colloids Surf A Physicochem Eng Asp. 2009;350(1–3):8–12. doi: 10.1016/j.colsurfa.2009.08.022.CrossRefGoogle Scholar
  37. 37.
    Pirmoradi FN, Jackson JK, Burt HM, Chiao M. On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab Chip. 2011;11(16):2744–52. doi: 10.1039/C1LC20134D.CrossRefPubMedGoogle Scholar
  38. 38.
    Peppas NA, Klier J. Controlled release by using poly(methacrylic acid-g-ethylene glycol) hydrogels. J Controlled Release. 1991;16(1):203–14. doi: 10.1016/0168-3659(91)90044-E.CrossRefGoogle Scholar
  39. 39.
    You Han B, Kun N (2005) pH-sensitive polymers for drug delivery. In: Polymeric drug delivery systems. Drugs and the pharmaceutical sciences. Informa Healthcare, pp 129–194. doi: 10.1201/9780849348129.ch3
  40. 40.
    Yang M, Cui F, You B, Wang L, Yue P, Kawashima Y. A novel pH-dependent gradient-release delivery system for nitrendipine: II. Investigations of the factors affecting the release behaviors of the system. Int J Pharm. 2004;286(1–2):99–109. doi: 10.1016/j.ijpharm.2004.08.007.CrossRefPubMedGoogle Scholar
  41. 41.
    Nielsen LH, Nagstrup J, Gordon S, Keller SS, Østergaard J, Rades T, Müllertz A, Boisen A. pH-triggered drug release from biodegradable microwells for oral drug delivery. Biomed Microdevices. 2015;17(3):55. doi: 10.1007/s10544-015-9958-5.CrossRefGoogle Scholar
  42. 42.
    Balamuralidhara V, Pramodkumar TM, Srujana N, Venkatesh MP, Vishal Gupta NV, Krishna KL, Gangadharappa HV. pH sensitive drug delivery systems: a review. Am J Drug Discov Develop. 2011;1:24–48.CrossRefGoogle Scholar
  43. 43.
    Lu D-x, X-t W, Liang J, X-d Z, Z-w G, Y-j F. Novel pH-sensitive drug delivery system based on natural polysaccharide for doxorubicin release. Chin J Polym Sci. 2008;26(03):369–74. doi: 10.1142/S0256767908003023.CrossRefGoogle Scholar
  44. 44.
    Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Controlled Release. 2003;91(1–2):103–13. doi: 10.1016/S0168-3659(03)00239-6.CrossRefGoogle Scholar
  45. 45.
    Gillies ER, Jonsson TB, Fréchet JMJ. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc. 2004;126(38):11936–43. doi: 10.1021/ja0463738.CrossRefPubMedGoogle Scholar
  46. 46.
    Ihre HR, Padilla De Jesús OL, Szoka FC, Fréchet JMJ. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjugate Chem. 2002;13(3):443–52. doi: 10.1021/bc010102u.CrossRefGoogle Scholar
  47. 47.
    Davidsen J, Vermehren C, Frokjaer S, Mouritsen OG, Jørgensen K. Drug delivery by phospholipase A2 degradable liposomes. Int J Pharm. 2001;214(1–2):67–9. doi: 10.1016/S0378-5173(00)00634-7.CrossRefPubMedGoogle Scholar
  48. 48.
    Anderson JL. Lipoprotein-associated phospholipase A2: an independent predictor of coronary artery disease events in primary and secondary prevention. Am J Cardiol. 2008;101(12):S23–33. doi: 10.1016/j.amjcard.2008.04.015.CrossRefGoogle Scholar
  49. 49.
    Park C, Kim H, Kim S, Kim C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. J Am Chem Soc. 2009;131(46):16614–5. doi: 10.1021/ja9061085.CrossRefPubMedGoogle Scholar
  50. 50.
    Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popović Z, Jain RK, Bawendi MG, Fukumura D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A. 2011;108(6):2426–31.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kim CS, Duncan B, Creran B, Rotello VM. Triggered nanoparticles as therapeutics. NanoToday. 2013;8(4):439–47. doi: 10.1016/j.nantod.2013.07.004.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chi C, Zhang Q, Mao Y, Kou D, Qiu J, Ye J, Wang J, Wang Z, Du Y, Tian J. Increased precision of orthotopic and metastatic breast cancer surgery guided by matrix metalloproteinase-activatable near-infrared fluorescence probes. Sci Rep. 2015;5:14197. doi: 10.1038/srep14197.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R. Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew Chem. 2005;117(26):4129–34. doi: 10.1002/ange.200462960.CrossRefGoogle Scholar
  54. 54.
    Bernardos A, Mondragon L, Aznar E, Marcos MD, Martinez-Manez R, Sancenon F, Soto J, Barat JM, Perez-Paya E, Guillem C, Amoros P. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano. 2010;4(11):6353–68. doi: 10.1021/nn101499d.CrossRefPubMedGoogle Scholar
  55. 55.
    Dzamukova MR, Naumenko EA, Lvov YM, Fakhrullin RF. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep. 2015;5:10560. doi: 10.1038/srep10560.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Huang P, Gao Y, Lin J, Hu H, Liao H-S, Yan X, Tang Y, Jin A, Song J, Niu G, Zhang G, Horkay F, Chen X. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano. 2015;9(10):9517–27. doi: 10.1021/acsnano.5b03874.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Agostini A, Mondragón L, Coll C, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J, Pérez-Payá E, Amorós P. Dual enzyme-triggered controlled release on capped nanometric silica mesoporous supports. Chemistry Open. 2012;1(1):17–20. doi: 10.1002/open.201200003.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, Park JH, Lee SC. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun. 2008;48:6570–2. doi: 10.1039/B815918A.CrossRefGoogle Scholar
  59. 59.
    Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal-nanoparticles loaded with TNFα-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater. 2010;9(11):923–8. doi: 10.1038/nmat2859.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc. 2009;131(13):4830–8. doi: 10.1021/ja809475a.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem. 2011;21(25):9239–47. doi: 10.1039/C1JM10631G.CrossRefGoogle Scholar
  62. 62.
    Bilalis P, Chatzipavlidis A, Tziveleka L-A, Boukos N, Kordas G. Nanodesigned magnetic polymer containers for dual stimuli actuated drug controlled release and magnetic hyperthermia mediation. J Mater Chem. 2012;22(27):13451–4. doi: 10.1039/C2JM31392H.CrossRefGoogle Scholar
  63. 63.
    Wang K, Guo D-S, Wang X, Liu Y. Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano. 2011;5(4):2880–94. doi: 10.1021/nn1034873.CrossRefPubMedGoogle Scholar
  64. 64.
    Loh XJ, del Barrio J, Toh PPC, Lee T-C, Jiao D, Rauwald U, Appel EA, Scherman OA. Triply triggered doxorubicin release from supramolecular nanocontainers. Biomacromolecules. 2012;13(1):84–91. doi: 10.1021/bm201588m.CrossRefPubMedGoogle Scholar
  65. 65.
    Furgeson DY, Dreher MR, Chilkoti A. Structural optimization of a “smart” doxorubicin–polypeptide conjugate for thermally targeted delivery to solid tumors. J Controlled Release. 2006;110(2):362–9. doi: 10.1016/j.jconrel.2005.10.006.CrossRefGoogle Scholar
  66. 66.
    Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir. 2009;25(21):12522–8. doi: 10.1021/la901776a.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre for Biosciences and Bio-medical Engineering, Indian Institute of Technology IndoreIndoreIndia
  2. 2.Department of Biosciences and Bioengineering, Indian Institute of Technology BombayMumbaiIndia
  3. 3.Center for Personalized Nanomedicine, Institute of Neuro-Immune Pharmacology, Department of Immunology, Herbert Wertheim College of MedicineFlorida International UniversityMiamiUSA

Personalised recommendations