Skip to main content

Hydrogels: Stimuli Responsive to on-Demand Drug Delivery Systems

  • Chapter
  • First Online:
Advances in Personalized Nanotherapeutics

Abstract

Hydrogels are the three dimensional crosslinked network of polymeric materials, which have the ability to respond and adapt to the surrounding environment inside the human body. Hydrogels are the upcoming class of biomaterials, which act as excellent drug delivery systems. These materials have important characteristic feature that they respond to various external stimuli like pH, light, temperature, magnetic field, electric field and pressure. Present chapter gives a broad overview of the recent hydrogels used for drug delivery using various external stimuli. Concluding remarks and viewpoints for the future development of stimuli responsive hydrogels are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vashist A, Ahmad S. Hydrogels: smart materials for drug delivery. Orient J Chem. 2013;29:861–70.

    Article  Google Scholar 

  2. Vashist A, Vashist A, Gupta Y, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B. 2014;2:147–66.

    Article  CAS  Google Scholar 

  3. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7:569–79.

    Article  CAS  PubMed  Google Scholar 

  4. Jing G, Wang L, Yu H, Amer WA, Zhang L. Recent progress on study of hybrid hydrogels for water treatment. Colloids Surf A Physicochem Eng Asp. 2013;416:86–94.

    Article  Google Scholar 

  5. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    Article  CAS  Google Scholar 

  6. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99:3181–98.

    Article  CAS  PubMed  Google Scholar 

  7. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003.

    Article  CAS  PubMed  Google Scholar 

  8. Lin C-C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58:1379–408.

    Article  CAS  PubMed  Google Scholar 

  9. Vashist A, Ahmad S. Hydrogels in tissue engineering: scope and applications. Curr Pharm Biotechnol. 2015;16:606–20.

    Article  CAS  PubMed  Google Scholar 

  10. Wei Q, Xu M, Liao C, Wu Q, Liu M, Zhang Y, et al. Printable hybrid hydrogel by dual enzymatic polymerization with superactivity. Chem Sci. 2016;7:2748–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Shi Y, Pan L, Shi Y, Yu G. Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. J Mater Chem B. 2015;3:2920–30.

    Article  CAS  Google Scholar 

  12. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano. 2015;9:4686–97.

    Article  CAS  PubMed  Google Scholar 

  13. Tabujew I, Peneva K. Functionalization of cationic polymers for drug delivery applications. In: Samal SK, Dubruel P, editors. Cationic polymers in regenerative medicine. Cambridge: Royal Society of Chemistry; 2014.

    Google Scholar 

  14. Watkins KA, Chen R. pH-responsive, lysine-based hydrogels for the oral delivery of a wide size range of molecules. Int J Pharm. 2015;478:496–503.

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Gu J, Zhang J, Xie Z, Lu Y, Shen L, et al. Injectable and biodegradable pH-responsive hydrogels for localized and sustained treatment of human fibrosarcoma. ACS Appl Mater Interfaces. 2015;7:8033–40.

    Article  CAS  PubMed  Google Scholar 

  16. Song HS, Kwon OS, Kim J-H, Conde J, Artzi N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron. 2017;89:187–200.

    Article  CAS  PubMed  Google Scholar 

  17. Campbell S, Maitland D, Hoare T. Enhanced pulsatile drug release from injectable magnetic hydrogels with embedded thermosensitive microgels. ACS Macro Lett. 2015;4:312–6.

    Article  CAS  Google Scholar 

  18. Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, et al. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater. 2013;23:660–72.

    Article  CAS  Google Scholar 

  19. Sapir Y, Cohen S, Friedman G, Polyak B. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials. 2012;33:4100–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Yang B, Zhang X, Xu L, Tao L, Li S, et al. A magnetic self-healing hydrogel. Chem Commun. 2012;48:9305–7.

    Article  CAS  Google Scholar 

  21. Liu T-Y, Hu S-H, Liu T-Y, Liu D-M, Chen S-Y. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir. 2006;22:5974–8.

    Article  CAS  PubMed  Google Scholar 

  22. Szabo D, Szeghy G, Zrinyi M. Shape transition of magnetic field sensitive polymer gels. Macromolecules. 1998;31:6541–8.

    Article  CAS  Google Scholar 

  23. Snyder R, Nguyen V, Ramanujan R. Design parameters for magneto-elastic soft actuators. Smart Mater Struct. 2010;19:055017.

    Article  Google Scholar 

  24. Fuhrer R, Athanassiou EK, Luechinger NA, Stark WJ. Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small. 2009;5:383–8.

    Article  CAS  PubMed  Google Scholar 

  25. Liu T-Y, Hu S-H, Liu D-M, Chen S-Y, Chen I-W. Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today. 2009;4:52–65.

    Article  CAS  Google Scholar 

  26. Kost J, Wolfrum J, Langer R. Magnetically enhanced insulin release in diabetic rats. J Biomed Mater Res. 1987;21:1367–73.

    Article  CAS  PubMed  Google Scholar 

  27. Ang K, Venkatraman S, Ramanujan R. Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater Sci Eng C. 2007;27:347–51.

    Article  CAS  Google Scholar 

  28. Le Renard P-E, Jordan O, Faes A, Petri-Fink A, Hofmann H, Ruefenacht D, et al. The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials. 2010;31:691–705.

    Article  PubMed  Google Scholar 

  29. McKenzie M, Betts D, Suh A, Bui K, Kim LD, Cho H. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules. 2015;20:20397–408.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen MK, Lee DS. Injectable biodegradable hydrogels. Macromol Biosci. 2010;10:563–79.

    Article  CAS  PubMed  Google Scholar 

  31. Wu Q, Wang N, He T, Shang J, Li L, Song L, et al. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model. Sci Rep. 2015;5:13553.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fusco S, Borzacchiello A, Netti P. Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications. J Bioact Compat Polym. 2006;21:149–64.

    Article  CAS  Google Scholar 

  33. Jeong B, Bae YH, Kim SW. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res. 2000;50:171–7.

    Article  CAS  PubMed  Google Scholar 

  34. Yan S, Zhang X, Zhang K, Di H, Feng L, Li G, et al. Injectable in situ forming poly (l-glutamic acid) hydrogels for cartilage tissue engineering. J Mater Chem B. 2016;4:947–61.

    Article  CAS  Google Scholar 

  35. Tahrir FG, Ganji F, Ahooyi TM. Injectable Thermosensitive chitosan/Glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review. Recent Pat Drug Deliv Formul. 2015;9:107–20.

    Article  CAS  PubMed  Google Scholar 

  36. Cho J, Heuzey M-C, Bégin A, Carreau PJ. Physical gelation of chitosan in the presence of β-glycerophosphate: the effect of temperature. Biomacromolecules. 2005;6:3267–75.

    Article  CAS  PubMed  Google Scholar 

  37. Cho J, Heuzey M-C, Bégin A, Carreau PJ. Chitosan and glycerophosphate concentration dependence of solution behaviour and gel point using small amplitude oscillatory rheometry. Food Hydrocoll. 2006;20:936–45.

    Article  CAS  Google Scholar 

  38. Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym. 2015;117:524–36.

    Article  CAS  PubMed  Google Scholar 

  39. Crompton K, Goud J, Bellamkonda R, Gengenbach T, Finkelstein D, Horne M, et al. Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials. 2007;28:441–9.

    Article  CAS  PubMed  Google Scholar 

  40. Elad D, Wolf M, Keck T. Air-conditioning in the human nasal cavity. Respir Physiol Neurobiol. 2008;163:121–7.

    Article  PubMed  Google Scholar 

  41. Mygind N, Dahl R. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev. 1998;29:3–12.

    Article  CAS  PubMed  Google Scholar 

  42. Nazar H, Fatouros DG, van der Merwe SM, Bouropoulos N, Avgouropoulos G, Tsibouklis J, et al. Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm. 2011;77:225–32.

    Article  CAS  PubMed  Google Scholar 

  43. Gou M, Li X, Dai M, Gong C, Wang X, Xie Y, et al. A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm. 2008;359:228–33.

    Article  CAS  PubMed  Google Scholar 

  44. Di J, Yao S, Ye Y, Cui Z, Yu J, Ghosh TK, et al. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano. 2015;9:9407–15.

    Article  CAS  PubMed  Google Scholar 

  45. Lee K, Cussler E, Marchetti M, McHugh M. Pressure-dependent phase transitions in hydrogels. Chem Eng Sci. 1990;45:766–7.

    Article  Google Scholar 

  46. Zhong X, Wang Y-X, Wang S-C. Pressure dependence of the volume phase-transition of temperature-sensitive gels. Chem Eng Sci. 1996;51:3235–9.

    Article  CAS  Google Scholar 

  47. Rosenthal A, Barry JJ, Sahatjian R. Triggered release hydrogel drug delivery system. Google Patents, 2003.

    Google Scholar 

  48. Yuk SH, Cho SH, Lee HB. Electric current-sensitive drug delivery systems using sodium alginate/polyacrylic acid composites. Pharm Res. 1992;09:955–7.

    Article  CAS  Google Scholar 

  49. Kwon IC, Bae YH, Kim SW. Electrically credible polymer gel for controlled release of drugs. Nature. 1991;354:291.

    Article  CAS  PubMed  Google Scholar 

  50. Delgado-Charro MB, Guy RH. Transdermal iontophoresis for controlled drug delivery and non-invasive monitoring. STP Pharma Sci. 2001;11:404–14.

    Google Scholar 

  51. Vanbever R, Preat V. In vivo efficacy and safety of skin electroporation. Adv Drug Deliv Rev. 1999;35:77–88.

    Article  CAS  PubMed  Google Scholar 

  52. Murdan S. Electro-responsive drug delivery from hydrogels. J Control Release. 2003;92:1–17.

    Article  CAS  PubMed  Google Scholar 

  53. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S. Collapse of gels in an electric field. Science. 1982;218:467–9.

    Article  CAS  PubMed  Google Scholar 

  54. Tomer R, Dimitrijevic D, Florence AT. Electrically controlled release of macromolecules from cross-linked hyaluronic acid hydrogels. J Control Release. 1995;33:405–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge NIH grants: RO1DA027049, R21MH 101,025, RO1DA 034547, R01DA037838, and 1R01DA040537.

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arti Vashist or Madhavan Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vashist, A., Kaushik, A., Jayant, R.D., Vashist, A., Ghosal, A., Nair, M. (2017). Hydrogels: Stimuli Responsive to on-Demand Drug Delivery Systems. In: Kaushik, A., Jayant, R., Nair, M. (eds) Advances in Personalized Nanotherapeutics . Springer, Cham. https://doi.org/10.1007/978-3-319-63633-7_8

Download citation

Publish with us

Policies and ethics