Advertisement

Targeted Drug Delivery for Personalized Cure

  • Rashmi Chaudhari
  • Abhijeet JoshiEmail author
Chapter
  • 385 Downloads

Abstract

Human population bears a similarity to an extent of 99.9%, however mere 0.1% of variability also creates large differences in personal make-up owing to several hereditary and environmental factors. Conventionally, development of healthcare modalities like diagnostics and therapeutics has been by mass production assuming uniformity in characteristics of recipient population. Due to the inherent variability in each individual clinical response to diagnostic and therapeutic products vary greatly ranging from inefficient therapeutic compliance, adverse reactions and hypersensitivity reactions. Personalization of medications is the need of hour to avoid perils of both modalities so that efficient healthcare is provided to human population. Advances in delivery like targeted drug formulations, companion diagnostics and triggered drug formulations provide necessary dimensions to personalized medicines. Formulations with these capabilities can be described as theranostics and have been instrumental in this decade to establish the field of personalized medicine. The current chapter reviews different types, mechanisms of targeted and triggered drug delivery systems that have helped to improve the diagnostic and therapeutic compliance in disease management.

Keywords

Targeted drug delivery Passive targeting Active targeting Triggered delivery 

Notes

Acknowledgement

Abhijeet Joshi acknowledges the INSPIRE Faculty award and fellowship provided by Department of Science and Technology, Government of India. Authors would also like acknowledge financial support from DBT and SERB.

References

  1. 1.
    Jain KK. Textbook of personalized medicine. 2nd ed. Berlin: Springer; 2015.Google Scholar
  2. 2.
  3. 3.
    Reiss T. Drug discovery of the future: the implications of the human genome project. Trends Biotechnol. 2001;19(12):496–9. doi: 10.1016/S0167-7799(01)01811-X.CrossRefPubMedGoogle Scholar
  4. 4.
    Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 2001;19(12):491–6. doi: 10.1016/S0167-7799(01)01814-5.CrossRefPubMedGoogle Scholar
  5. 5.
    Doren M, Samsioe G. Prevention of postmenopausal osteoporosis with oestrogen replacement therapy and associated compounds: update on clinical trials since 1995. Hum Reprod Update. 2000;6(5):419–26.CrossRefPubMedGoogle Scholar
  6. 6.
    Wening K, Breitkreutz J. Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm. 2011;404:1–9. doi: 10.1016/j.ijpharm.2010.11.001.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang B, Zhuang X, Deng Z-B, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, Yan J, Miller D, Zhang H-G. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Therapeutics. 2014;22(3):522–34. doi: 10.1038/mt.2013.190.Google Scholar
  8. 8.
    Tiwari G, Tiwari R, Wal P, Wal A, Rai AK. Primary and novel approaches for colon targeted drug delivery—a review. Int J Drug Deliv. 2010;2:1–11.CrossRefGoogle Scholar
  9. 9.
    Friend DR, Chang GW. A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem. 1984;27(3):261–6. doi: 10.1021/jm00369a005.CrossRefPubMedGoogle Scholar
  10. 10.
    Hata T, Shimazaki Y, Kagayama A, Tamura S, Ueda S. Development of a novel drug delivery system, time-controlled explosion system (TES): V. Animal pharmacodynamic study and human bioavailability study. Int J Pharm. 1994;110(1):1–7. doi: 10.1016/0378-5173(94)90369-7.CrossRefGoogle Scholar
  11. 11.
    Tozaki H, Odoriba T, Okada N, Fujita T, Terabe A, Suzuki T, Okabe S, Muranishi S, Yamamoto A. Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. J Control Release. 2002;82(1):51–61. doi: 10.1016/S0168-3659(02)00084-6.CrossRefPubMedGoogle Scholar
  12. 12.
    Lu W, Tan Y-Z, K-L H, Jiang X-G. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood–brain barrier. Int J Pharm. 2005;295(1-2):247–60. doi: 10.1016/j.ijpharm.2005.01.043.CrossRefPubMedGoogle Scholar
  13. 13.
    Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer. 2007;120(2):420–31. doi: 10.1002/ijc.22296.CrossRefPubMedGoogle Scholar
  14. 14.
    Qin Y, Chen H, Zhang Q, Wang X, Yuan W, Kuai R, Tang J, Zhang L, Zhang Z, Zhang Q, Liu J, He Q. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm. 2011;420(2):304–12. doi: 10.1016/j.ijpharm.2011.09.008.CrossRefPubMedGoogle Scholar
  15. 15.
    Fenart L, Casanova A, Dehouck B, Duhem C, Slupek S, Cecchelli R, Betbeder D. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther. 1999;291(3):1017–22.PubMedGoogle Scholar
  16. 16.
    Zhang P, Hu L, Yin Q, Zhang Z, Feng L, Li Y. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation. J Control Release. 2012;159(3):429–34. doi: 10.1016/j.jconrel.2012.01.031.CrossRefPubMedGoogle Scholar
  17. 17.
    Huwyler JWD, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci. 1996;93:14164–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 2008;324:1064–72.CrossRefPubMedGoogle Scholar
  19. 19.
    Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, Ren J, Qian Y, Zhang Q, Chen J, Jiang X. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials. 2012;33(3):916–24. doi: 10.1016/j.biomaterials.2011.10.035.PubMedGoogle Scholar
  20. 20.
    Tamaru M, Akita H, Fujiwara T, Kajimoto K, Harashima H. Leptin-derived peptide, a targeting ligand for mouse brain-derived endothelial cells via macropinocytosis. Biochem Biophys Res Commun. 2010;394(3):587–92. doi: 10.1016/j.bbrc.2010.03.024.CrossRefPubMedGoogle Scholar
  21. 21.
    Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine-coated nanoparticles. J Control Release. 2003;93(3):271–82. doi: 10.1016/j.jconrel.2003.08.006.CrossRefPubMedGoogle Scholar
  22. 22.
    Gaillard PJ, de Boer AG. 2B-trans™ technology: targeted drug delivery across the blood-brain barrier. In: Jain KK, editor. Drug delivery systems. Totowa, NJ: Humana Press; 2008. p. 161–75. doi: 10.1007/978-1-59745-210-6_8.CrossRefGoogle Scholar
  23. 23.
    Son YJ, Jang J-S, Cho YW, Chung H, Park R-W, Kwon IC, Kim I-S, Park JY, Seo SB, Park CR, Jeong SY. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release. 2003;91(1-2):135–45. doi: 10.1016/S0168-3659(03)00231-1.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee E, Lee J, Lee I-H, Yu M, Kim H, Chae SY, Jon S. Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem. 2008;51(20):6442–9. doi: 10.1021/jm800767c.CrossRefPubMedGoogle Scholar
  25. 25.
    Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2013;4(4):385–92. doi: 10.1007/s13204-013-0216-y.CrossRefGoogle Scholar
  26. 26.
    Chen F-H, Zhang L-M, Chen Q-T, Zhang Y, Zhang Z-J. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun. 2010;46(45):8633–5. doi: 10.1039/C0CC02577A.CrossRefGoogle Scholar
  27. 27.
    Arias JL, Gallardo V, Ruiz MA, Delgado ÁV. Magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles as 5-fluorouracil delivery systems for active targeting. Eur J Pharm Biopharm. 2008;69(1):54–63. doi: 10.1016/j.ejpb.2007.11.002.CrossRefPubMedGoogle Scholar
  28. 28.
    Ogawara K-i, Yoshida M, Higaki K, Toshikiro K, Shiraishi K, Nishikawa M, Takakura Y, Hashida M. Hepatic uptake of polystyrene microspheres in rats: effect of particle size on intrahepatic distribution. J Control Release. 1999;59(1):15–22. doi: 10.1016/S0168-3659(99)00015-2.CrossRefPubMedGoogle Scholar
  29. 29.
    Kato Y, Onishi H, Machida Y. Biological characteristics of lactosaminated N-succinyl-chitosan as a liver-specific drug carrier in mice. J Control Release. 2001;70(3):295–307. doi: 10.1016/S0168-3659(00)00356-4.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang KW, Li XR, Yang ZL, Li PZ, Wang F, Liu Y. Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate: in vitro and in vivo characterization. J Biomed Mater Res A. 2009;88A(1):140–8. doi: 10.1002/jbm.a.31866.CrossRefGoogle Scholar
  31. 31.
    Yuan Z-X, Sun X, Gong T, Ding H, Fu Y, Zhang Z-R. Randomly 50% N-acetylated low molecular weight chitosan as a novel renal targeting carrier. J Drug Target. 2007;15(4):269–78. doi: 10.1080/10611860701289875.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang R, Yang S-G, Shim W-S, Cui F, Cheng G, Kim I-W, Kim D-D, Chung S-J, Shim C-K. Lung-specific delivery of paclitaxel by chitosan-modified PLGA nanoparticles via transient formation of microaggregates. J Pharm Sci. 2009;98(3):970–84. doi: 10.1002/jps.21487.CrossRefPubMedGoogle Scholar
  33. 33.
    Joshi N, Shirsath N, Singh A, Joshi KS, Banerjee R. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases. Sci Rep. 2014;4:7085. doi: 10.1038/srep07085.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci. 2006;48(3):171–6.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biosciences and BioengineeringIndian Institute of TechnologyMumbaiIndia
  2. 2.Centre for Biosciences and Biomedical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations