Nanoformulations for Therapeutics

  • PSS RaoEmail author
  • Christopher RT Stang


In the recent decade and a half, research in the area of nanoformulation has vastly expanded, including research dedicated to discovery of novel drugs as well as the reformulation of tried and tested drugs. The utilization of nanoformulations has yielded positive results in areas that have typically been regarded as therapeutic challenges. Nanoformulations, by in large, aim to alter the pharmacokinetic properties of a medication, improving absorption, distribution, selectivity, and altering metabolism. The blood-brain barrier has largely been an obstacle in the treatment of neurodegenerative disorders and tumors located within the central nervous system. Several drugs have been discovered that are effective in treating these pathologies. However, reaching appropriate therapeutic concentration in the central nervous system, without excessive systemic drug concentrations and side effects, has remained a limitation to these medications’ efficacy. Nanoformulating such medications has yielded improved drug delivery and efficacy to the central nervous system despite the influences of multi-drug resistance proteins. Various methods of nanoformulation have been employed to facilitate the selective transport of drugs across the blood-brain barrier including the use of focused ultrasound, magnetic targeting, macrophage loaded drug formulations, carbon nanotubules, polymer coatings, and receptor-mediated transcytosis. These formulations have resulted in the efficient delivery of drug molecules, proteins, and DNA to the relevant tissue in the central nervous system. The continued research into nanoformulations allows for the development of more selective and effective medications while possibly salvaging medications that were deemed not useful due to their sub-therapeutic properties.


Nanoformulations Personalized nanotherapeutics Nano-biotechnology 



The authors would like to thank the original authors and Elsevier for providing the copyrights permission to use Figs. 6.1 and 6.2 included in this book chapter. The authors would also like to thank the original authors and the American Chemical Society for providing the copyrights permission to use Fig. 6.3 and Fig. 6.4.


  1. 1.
    Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9:4357–73.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Weissig V, Guzman-Villanueva D. Nanopharmaceuticals (part 2): products in the pipeline. Int J Nanomedicine. 2015;10:1245–57.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci. 2007;96(10):2547–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154–69.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol. 1992;32(6):804–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Brynskikh AM, Zhao Y, Mosley RL, Li S, Boska MD, Klyachko NL, et al. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine (Lond). 2010;5(3):379–96.CrossRefGoogle Scholar
  7. 7.
    Ambani LM, Van Woert MH, Murphy S. Brain peroxidase and catalase in Parkinson disease. Arch Neurol. 1975;32(2):114–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Esteves M, Cristovao AC, Saraiva T, Rocha SM, Baltazar G, Ferreira L, et al. Retinoic acid-loaded polymeric nanoparticles induce neuroprotection in a mouse model for Parkinson’s disease. Front Aging Neurosci. 2015;7:20.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maden M, Hind M. Retinoic acid, a regeneration-inducing molecule. Dev Dyn. 2003;226(2):237–44.CrossRefPubMedGoogle Scholar
  10. 10.
    Ngwuluka NC, Choonara YE, Kumar P, du Toit LC, Modi G, Pillay V. An optimized gastroretentive nanosystem for the delivery of levodopa. Int J Pharm. 2015;494(1):49–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Gambaryan PY, Kondrasheva IG, Severin ES, Guseva AA, Kamensky AA. Increasing the efficiency of Parkinson’s disease treatment using a poly(lactic-co-glycolic acid) (PLGA) based L-DOPA delivery system. Exp Neurobiol. 2014;23(3):246–52.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195–203.CrossRefPubMedGoogle Scholar
  13. 13.
    Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, et al. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm. 2005;59(2):263–72.CrossRefPubMedGoogle Scholar
  14. 14.
    Koziara JM, Lockman PR, Allen DD, Mumper RJ. In situ blood-brain barrier transport of nanoparticles. Pharm Res. 2003;20(11):1772–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Sriramoju B, Kanwar RK, Kanwar JR. Nanoformulated mutant SurR9-C84A: a possible key for Alzheimer’s and its associated inflammation. Pharm Res. 2015;32(8):2787–97.PubMedGoogle Scholar
  16. 16.
    Xu S, Chen M, Yao Y, Zhang Z, Jin T, Huang Y, et al. Novel poly(ethylene imine) biscarbamate conjugate as an efficient and nontoxic gene delivery system. J Control Release. 2008;130(1):64–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Chonpathompikunlert P, Wattanathorn J, Muchimapura S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol. 2010;48(3):798–802.CrossRefPubMedGoogle Scholar
  18. 18.
    Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal Piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544–56.CrossRefGoogle Scholar
  19. 19.
    Green RC, Schneider LS, Amato DA, Beelen AP, Wilcock G, Swabb EA, et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA. 2009;302(23):2557–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Muntimadugu E, Dhommati R, Jain A, Challa VG, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci. 2016;92:224–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Abeta uptake and degradation by astrocytes. J Biol Chem. 2012;287(17):13959–71.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Castellano JM, Deane R, Gottesdiener AJ, Verghese PB, Stewart FR, West T, et al. Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Abeta clearance in a mouse model of beta-amyloidosis. Proc Natl Acad Sci USA. 2012;109(38):15502–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Katsouri L, Georgopoulos S. Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer’s disease mouse model. PLoS One. 2011;6(7):e21880.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang Y, Xia Z, Xu JR, Wang YX, Hou LN, Qiu Y, et al. Alpha-mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates beta-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology. 2012;62(2):871–81.CrossRefPubMedGoogle Scholar
  25. 25.
    Li L, Brunner I, Han AR, Hamburger M, Kinghorn AD, Frye R, et al. Pharmacokinetics of alpha-mangostin in rats after intravenous and oral application. Mol Nutr Food Res. 2011;55(Suppl 1):S67–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Yao L, Gu X, Song Q, Wang X, Huang M, Hu M, et al. Nanoformulated alpha-mangostin ameliorates Alzheimer’s disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. J Control Release. 2016;226:1–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Song Q, Song H, Xu J, Huang J, Hu M, Gu X, et al. Biomimetic ApoE-reconstituted high density lipoprotein Nanocarrier for blood-brain barrier penetration and amyloid Beta-targeting drug delivery. Mol Pharm. 2016;13:3976.CrossRefPubMedGoogle Scholar
  28. 28.
    Patil SP, Ballard R, Sanchez S, Osborn J, Santangelo D Jr. ApoE: the link between Alzheimer’s-related glucose hypometabolism and Abeta deposition? Med Hypotheses. 2012;78(4):494–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Thal DR, Capetillo-Zarate E, Schultz C, Rub U, Saido TC, Yamaguchi H, et al. Apolipoprotein E co-localizes with newly formed amyloid beta-protein (Abeta) deposits lacking immunoreactivity against N-terminal epitopes of Abeta in a genotype-dependent manner. Acta Neuropathol. 2005;110(5):459–71.CrossRefPubMedGoogle Scholar
  30. 30.
    Zaldivar T, Gutierrez J, Lara G, Carbonara M, Logroscino G, Hardiman O. Reduced frequency of ALS in an ethnically mixed population: a population-based mortality study. Neurology. 2009;72(19):1640–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Gordon PH. Amyotrophic lateral sclerosis: pathophysiology, diagnosis and management. CNS Drugs. 2011;25(1):1–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, et al. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the quality standards Subcommittee of the American Academy of neurology. Neurology. 2009;73(15):1218–26.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Doble A. The pharmacology and mechanism of action of riluzole. Neurology. 1996;47(Issue 6, Supplement 4):233S–41S.CrossRefGoogle Scholar
  34. 34.
    Bondi ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond). 2010;5(1):25–32.CrossRefGoogle Scholar
  35. 35.
    Chigumbu N, Iyuke S, Pillay V, Ndlovu S. In vitro evaluation of the physicochemical effects of drug loaded carbon nanotubes on toxicity. J Nanomed Nanotechnol. 2012;03(04):135.CrossRefGoogle Scholar
  36. 36.
    Wiley N, Madhankumar A, Mitchell R, Neely E, Rizk E, Douds G, et al. Lipopolysaccharide modified liposomes for Amyotropic lateral sclerosis therapy: efficacy in SOD1 mouse model. Adv Nanopart. 2012;01:44–53.CrossRefGoogle Scholar
  37. 37.
    Haider L, Fischer MT, Frischer JM, Bauer J, Hoftberger R, Botond G, et al. Oxidative damage in multiple sclerosis lesions. Brain. 2011;134(7):1914–24.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Binyamin O, Larush L, Frid K, Keller G, Friedman-Levi Y, Ovadia H, et al. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant. Int J Nanomedicine. 2015;10:7165–74.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Mohajeri M, Sadeghizadeh M, Najafi F, Javan M. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology. 2015;99:156–67.CrossRefPubMedGoogle Scholar
  40. 40.
    Laws ER Jr, Thapar K. Brain tumors. CA Cancer J Clin. 1993;43(5):263–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Mesti T, Ocvirk J. Malignant gliomas: old and new systemic treatment approaches. Radiol Oncol. 2016;50(2):129–38.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.CrossRefPubMedGoogle Scholar
  43. 43.
    Dinda SC, Pattnaik G. Nanobiotechnology-based drug delivery in brain targeting. Curr Pharm Biotechnol. 2013;14(15):1264–74.CrossRefPubMedGoogle Scholar
  44. 44.
    Yang FY, Wong TT, Teng MC, Liu RS, Lu M, Liang HF, et al. Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. J Control Release. 2012;160(3):652–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Shevtsov MA, Multhoff G. Recent developments of magnetic nanoparticles for theranostics of brain tumor. Curr Drug Metab. 2016;17:737–44.CrossRefPubMedGoogle Scholar
  46. 46.
    Yi GQ, Gu B, Chen LK. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumour Biol. 2014;35(3):2445–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: nanoparticles for drug delivery across the blood-brain barrier (BBB). J Drug Target. 2011;19(2):125–32.CrossRefPubMedGoogle Scholar
  48. 48.
    Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm. 2009;71(2):251–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Salzano G, Zappavigna S, Luce A, D’Onofrio N, Balestrieri ML, Grimaldi A, et al. Transferrin-targeted nanoparticles containing Zoledronic acid as a potential tool to inhibit glioblastoma growth. J Biomed Nanotechnol. 2016;12(4):811–30.CrossRefPubMedGoogle Scholar
  50. 50.
    Agrawal U, Chashoo G, Sharma PR, Kumar A, Saxena AK, Vyas SP. Tailored polymer-lipid hybrid nanoparticles for the delivery of drug conjugate: dual strategy for brain targeting. Colloids Surf B Biointerfaces. 2015;126:414–25.CrossRefPubMedGoogle Scholar
  51. 51.
    Pilch J, Brown DM, Komatsu M, Jarvinen TA, Yang M, Peters D, et al. Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci USA. 2006;103(8):2800–4.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhang B, Shen S, Liao Z, Shi W, Wang Y, Zhao J, et al. Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials. 2014;35(13):4088–98.CrossRefPubMedGoogle Scholar
  53. 53.
    Kang T, Zhu Q, Jiang D, Feng X, Feng J, Jiang T, et al. Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment. Biomaterials. 2016;101:60–75.CrossRefPubMedGoogle Scholar
  54. 54.
    Leins A, Riva P, Lindstedt R, Davidoff MS, Mehraein P, Weis S. Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma. Cancer. 2003;98(11):2430–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Ellis LM. The role of neuropilins in cancer. Mol Cancer Ther. 2006;5(5):1099–107.CrossRefPubMedGoogle Scholar
  56. 56.
    Golden PL, Pollack GM. Blood-brain barrier efflux transport. J Pharm Sci. 2003;92(9):1739–53.CrossRefPubMedGoogle Scholar
  57. 57.
    Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev Mol Med. 2011;13:e17.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Haimeur A, Conseil G, Deeley RG, Cole SP. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab. 2004;5(1):21–53.CrossRefPubMedGoogle Scholar
  59. 59.
    Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem. 1989;37(2):159–64.CrossRefPubMedGoogle Scholar
  60. 60.
    Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002;303(3):1029–37.CrossRefPubMedGoogle Scholar
  61. 61.
    Liu JS, Wang JH, Zhou J, Tang XH, Xu L, Shen T, et al. Enhanced brain delivery of lamotrigine with Pluronic((R)) P123-based nanocarrier. Int J Nanomedicine. 2014;9:3923–35.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Tang B, Fang G, Gao Y, Liu Y, Liu J, Zou M, et al. Lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel for intracellular drug delivery to C6 glioma cells with P-gp inhibition and its tumor targeting. Asian J Pharm Sci. 2015;10(5):363–71.CrossRefGoogle Scholar
  63. 63.
    Danson SJ, Middleton MR. Temozolomide: a novel oral alkylating agent. Expert Rev Anticancer Ther. 2001;1(1):13–9.CrossRefPubMedGoogle Scholar
  64. 64.
    D’Atri S, Tentori L, Lacal PM, Graziani G, Pagani E, Benincasa E, et al. Involvement of the mismatch repair system in temozolomide-induced apoptosis. Mol Pharmacol. 1998;54(2):334–41.PubMedGoogle Scholar
  65. 65.
    Chamberlain MC. Temozolomide: therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev Neurother. 2010;10(10):1537–44.CrossRefPubMedGoogle Scholar
  66. 66.
    Ramirez YP, Weatherbee JL, Wheelhouse RT, Ross AH. Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals (Basel). 2013;6(12):1475–506.CrossRefGoogle Scholar
  67. 67.
    Kim SS, Rait A, Kim E, DeMarco J, Pirollo KF, Chang EH. Encapsulation of temozolomide in a tumor-targeting nanocomplex enhances anti-cancer efficacy and reduces toxicity in a mouse model of glioblastoma. Cancer Lett. 2015;369(1):250–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.CrossRefPubMedGoogle Scholar
  69. 69.
    Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK. MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer. 2007;48(4):403–7.CrossRefPubMedGoogle Scholar
  70. 70.
    Idbaih A, Omuro A, Ducray F, Hoang-Xuan K. Molecular genetic markers as predictors of response to chemotherapy in gliomas. Curr Opin Oncol. 2007;19(6):606–11.CrossRefPubMedGoogle Scholar
  71. 71.
    Kokkinakis DM, Ahmed MM, Chendil D, Moschel RC, Pegg AE. Sensitization of pancreatic tumor xenografts to carmustine and temozolomide by inactivation of their O6-Methylguanine-DNA methyltransferase with O6-benzylguanine or O6-benzyl-2′-deoxyguanosine. Clin Cancer Res. 2003;9(10 Pt 1):3801–7.PubMedGoogle Scholar
  72. 72.
    Rhines LD, Sampath P, Dolan ME, Tyler BM, Brem H, Weingart J. O6-benzylguanine potentiates the antitumor effect of locally delivered carmustine against an intracranial rat glioma. Cancer Res. 2000;60(22):6307–10.PubMedGoogle Scholar
  73. 73.
    Liu C, Yao S, Li X, Wang F, Jiang Y. iRGD-mediated core-shell nanoparticles loading carmustine and O6-benzylguanine for glioma therapy. J Drug Target. 2016;25:235–46.CrossRefPubMedGoogle Scholar
  74. 74.
    Qian L, Zheng J, Wang K, Tang Y, Zhang X, Zhang H, et al. Cationic core-shell nanoparticles with carmustine contained within O(6)-benzylguanine shell for glioma therapy. Biomaterials. 2013;34(35):8968–78.CrossRefPubMedGoogle Scholar
  75. 75.
    Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K, et al. Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS Nano. 2014;8(10):10383–95.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kim SS, Rait A, Kim E, Pirollo KF, Nishida M, Farkas N, et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano. 2014;8(6):5494–514.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Yoo B, Ifediba MA, Ghosh S, Medarova Z, Moore A. Combination treatment with theranostic nanoparticles for glioblastoma sensitization to TMZ. Mol Imaging Biol. 2014;16(5):680–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Ananta JS, Paulmurugan R, Massoud TF. Tailored nanoparticle codelivery of antimiR-21 and antimiR-10b augments glioblastoma cell kill by Temozolomide: toward a “personalized” anti-microRNA therapy. Mol Pharm. 2016;13(9):3164–75.CrossRefPubMedGoogle Scholar
  79. 79.
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029–33.CrossRefPubMedGoogle Scholar
  80. 80.
    Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334(4):1351–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human glioma growth is controlled by microRNA-10b. Cancer Res. 2011;71(10):3563–72.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Karsy M, Arslan E, Moy F. Current progress on understanding MicroRNAs in glioblastoma multiforme. Genes Cancer. 2012;3(1):3–15.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Qian X, Long L, Shi Z, Liu C, Qiu M, Sheng J, et al. Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials. 2014;35(7):2322–35.CrossRefPubMedGoogle Scholar
  84. 84.
    Tahmasebi Mirgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, et al. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine. 2014;9:403–17.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sachdeva M, Mo YY. miR-145-mediated suppression of cell growth, invasion and metastasis. Am J Transl Res. 2010;2(2):170–80.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70(1):378–87.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, College of PharmacyThe University of FindlayFindlayUSA

Personalised recommendations