Nanomaterials for Drug Delivery

  • Krati SharmaEmail author


Nanotechnology in medicine and drug delivery are currently investigating many nanomaterials for drug delivery. Several nanomaterials have been approved for medicinal use and treatment of life threatening diseases. Nanomaterials have applications from binding to the right target to the delivery of drug molecules at the target site. Nanomaterials are the potential candidates in site specific delivery due to their unique properties, size and shape. There versatile use brings an attention to know more about their size, shape and different chemical behavior. The detailed study can direct the ongoing research in a manner to know the potential hazards of nanoparticles (NPs). Several formulations include size and surface characteristics, chemical and physical interactions, increase in permeability, retention effect and other major influencers have been taken into account in development strategies of drug delivery methods. Nano materials may or may not be soluble in biological matrices and can lead to toxicity, thus cell toxicity majorly influence the potential exposure to biological systems. For NPs, the small size allow access to thin and very narrow cellular components such as a need of potential NPs to cross the blood brain barrier. A multitude of substances are recently under study for drug delivery applications such as liposomes, gene based conjugated materials, polymers micelles etc. Various research efforts have been safe and efficient in using NPs drug delivery methods. This chapter provides recent research protocols used along with different conjugation methods. Chemically modified nanomaterials and their derivatives used in drug delivery research are also discussed to evaluate the usefulness of these systems in delivering the bioactive molecules.


Nanostructures Biomedical Applications Drug delivery 



The authors appreciate Fox Chase Cancer Center, Philadelphia, USA for support and motivation.


  1. 1.
    Kaur PK, et al. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. J Drug Develop Ind Pharm. 2002;28:353–69.CrossRefGoogle Scholar
  2. 2.
    Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalized carbon nanotubes. Chem Commun. 2005:571–7.Google Scholar
  3. 3.
    Habibizadeh M, Rostamizadeh K, Dalali N, Ramazani A. Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: a comparative study. Mater Sci Eng C Mater Biol Appl. 2017;74:1–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu Z, Davis C, Cal WB, He L, Chen XY, Dal HJ. Circulationand long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci. 2008;105:1410–5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Singh R, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci. 2006;103(9):3357–62.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Worle-Knirsh JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6(6):1261–8.CrossRefGoogle Scholar
  7. 7.
    Wang H, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol. 2004;4:1019–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Wong N, et al. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc. 2004;126:6850–1.CrossRefGoogle Scholar
  9. 9.
    Kam NW, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005;127:6021–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Prato M, Kostarelos KAB. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41:60–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen JY, et al. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor targeted drug delivery. J Am Chem Soc. 2008;130:16778–85.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ. Supramolecular chemistry on water soluble carbon nanotubes for drug loading and delivery. ACS Nano. 2007;1:50–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Mu QX, Broughton DL, Yan B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 2009;9:4370–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Heister E, et al. Triple functionalization of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon. 2009;47:2152–60.CrossRefGoogle Scholar
  15. 15.
    Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005;127(16):6021–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Int J Pharm. 2017;456:143.CrossRefGoogle Scholar
  17. 17.
    Kushwaha SKS, Ghoshal S, Rai AK, Singh S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci. 2013;49(4):629–43.CrossRefGoogle Scholar
  18. 18.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1. 2005;1:325–7.CrossRefGoogle Scholar
  19. 19.
    Deb S, et al. Multistability in platelets and their response to gold nanoparticles. Nanomedicine. 2011;7:376.CrossRefPubMedGoogle Scholar
  20. 20.
    Ganeshkumar M, et al. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: preparation, characterization and toxicity studies in zebrafish. Mater Res Bull. 2012;47:2113–9.CrossRefGoogle Scholar
  21. 21.
    Lee K, Lee H, Bae KH, Park TG. Heparin immobilized gold nanoparticles for targeted detection and apoptotic death of metastatic cancer cells. Biomaterials. 2010;31:6530.CrossRefPubMedGoogle Scholar
  22. 22.
    Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Radin S, Ducheyne P, Kamplain T, Tan BH, Silica J. Sol-gel for the controlled release of antibiotics. Synthesis, characterization, and in vitro release. Biomed Mater Res. 2001;57:313.CrossRefGoogle Scholar
  24. 24.
    Slowing II, Trewyn BG, Giri S, Lin VS-Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2007;17:1225.CrossRefGoogle Scholar
  25. 25.
    Goodman AM, et al. Understanding resonant light-triggered DNA release from Plasmonic nanoparticles. ACS Nano. 2017;11:171.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen Y, et al. Transdermal vascular endothelial growth factor delivery with surface engineered gold nanoparticles. ACS Appl Mater Interfaces. 2017;9:5173–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Belz J, Castilla-Ojo N, Sridhar S, Kumar R. Radiosensitizing silica nanoparticles encapsulating docetaxel for treatment of prostate cancer. Methods Mol Biol. 2017;1530:403–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hostetler MJ, et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir. 1998;14:17.CrossRefGoogle Scholar
  29. 29.
    Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc. 2007;129:11653.CrossRefPubMedGoogle Scholar
  30. 30.
    Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res. 2006;67:47.CrossRefGoogle Scholar
  31. 31.
    Chen Y-H, et al. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007;4(5):713–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Li J, Wang X, Wang C, Chen B, Dai Y, Zhang R, Song M, Lv G, Fu D. The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells. ChemMedChem. 2007;2:374.CrossRefPubMedGoogle Scholar
  33. 33.
    Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, Muders M, Wang S, Buhrow SA, Safgren SL, Yaszemski MJ, Reid JM, Ames MM, Mukherjee P, Mukhopadhyay D. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 2008;68:1970.CrossRefPubMedGoogle Scholar
  34. 34.
    Podsiadlo P, Sinani VA, Bahng JH, Kam NW, Lee J, Kotov NA. Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir. 2008;24(2):568–74.CrossRefPubMedGoogle Scholar
  35. 35.
    Azzam EMS, Morsy SMI. Enhancement of the antitumour activity for the synthesised Dodecylcysteine surfactant using gold nanoparticles. J Surf Deterg. 2008;11:195–9.CrossRefGoogle Scholar
  36. 36.
    Agasti SS, et al. Photoregulated release of caged anticancer drugs from gold nanoparticles. J Am Chem Soc. 2009;131(16):5728–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dhar S, et al. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum (IV) warheads. J Am Chem Soc. 2009;131(41):14652–3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huang-Chiao H, et al. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. Acs Nano. 2009;3(10):2941–52.CrossRefGoogle Scholar
  39. 39.
    Podsiadlo P, Sinani VA, Bahng JH, Kam NW, Lee J, Kotov NA. Gold nanoparticles enhance the antileukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir. 2008;24(2):568–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Dreaden EC, et al. Tamoxifen−poly (ethylene glycol)−thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem. 2009;20(12):2247–53.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Eghtedari M, et al. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett. 2008;9(1):287–91.CrossRefGoogle Scholar
  42. 42.
    Asadishad B, Vossoughi M, Alemzadeh I. In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells. Ind Eng Chem Res. 131(16): 5728–9.Google Scholar
  43. 43.
    Staroverov SA, et al. Gold nanoparticles in biology and medicine: recent advances and prospects. Rossiyski bioterapevticheski zhurnal. 2010;31(41):14652–3.Google Scholar
  44. 44.
    Kim CK, Ghosh P, Rotello VM. Multimodal drug delivery using gold nanoparticles. Nanoscale. 2009;1(1):61–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Igor I, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60:1278.CrossRefGoogle Scholar
  46. 46.
    Gruen M, Lauer I, Unger KK. The synthesis of micrometer- and submicrometersize spheres of ordered mesoporous oxide MCM-41. Adv Mater. 1997;9:254–7.CrossRefGoogle Scholar
  47. 47.
    Unger KK, et al. Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromato- graphic and electrokinetic separations. J Chromatogr A. 2000;892(1):47–55.CrossRefPubMedGoogle Scholar
  48. 48.
    Huo Q, Feng J, Schüth F, Stucky GD. Preparation of hard mesoporous silica spheres. Chem Mater. 1997;9(1):14–7.CrossRefGoogle Scholar
  49. 49.
    Huh S, et al. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mater. 2003;15(22):4247–56.CrossRefGoogle Scholar
  50. 50.
    Burleigh MC, et al. Stepwise assembly of surface imprint sites on MCM-41 for selective metal ion separations. ACS Symposium Series; 2001. p. 146–158.Google Scholar
  51. 51.
    Chen HT, Huh S, Lin VS. In: Regalbuto J, editor. Fine tuning the functionalization of mesoporous silica. New York: CRC/Taylor & Francis; 2007.Google Scholar
  52. 52.
    Fei W, et al. RGD conjugated liposome-hollow silica hybrid nano-vehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. Int J Pharm. 2017;519(1):250–62.CrossRefPubMedGoogle Scholar
  53. 53.
    Zheng Y, et al. Large-pore functionalized mesoporous silica nanoparticles as drug delivery vector for a highly cytotoxic hybrid platinum-acridine anticancer agent. Chemistry. 2017;23(14):3386–97.CrossRefPubMedGoogle Scholar
  54. 54.
    Huh S, Wiench JW, Yoo J-C, Pruski M, Lin VSY. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mater. 2003;15(22):4247–56.CrossRefGoogle Scholar
  55. 55.
    Michalet X, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–44.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gao X, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 2004;22(8):969–76.CrossRefGoogle Scholar
  57. 57.
    Willard MA, et al. Chemically prepared magnetic nanoparticles. Int Mater Rev. 2004;49(3–4):125–70.CrossRefGoogle Scholar
  58. 58.
    Choi HS, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    McNamara JO, et al. Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnol. 2006;24(8):1005–15.CrossRefGoogle Scholar
  60. 60.
    Medarova Z, et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med. 2007;13(3):372–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials. 2007;28(8):1565–71.CrossRefPubMedGoogle Scholar
  62. 62.
    Jia N, et al. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett. 2007;7(10):2976–80.CrossRefPubMedGoogle Scholar
  63. 63.
    Remaut K, et al. Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J Control Release. 2007;117(2):256–66.CrossRefPubMedGoogle Scholar
  64. 64.
    Yao X, et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and Photothermal therapy. Small. 2017;13(2):1602225.CrossRefGoogle Scholar
  65. 65.
    Wilson MW, et al. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with four patients. Radiology. 2004;230(1):287–93.CrossRefPubMedGoogle Scholar
  66. 66.
    Plank C, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem. 2003;384(5):737–47.CrossRefPubMedGoogle Scholar
  67. 67.
    Dobson J. Magnetic properties of biological materials. In: Barnes S, Greenebaum B, editors. Handbook of biological effects of electromagnetic fields: bioengineering and biophysical aspects of electromagnetic fields. Boca Raton: Taylor and Francis/CRC Press; 2007.Google Scholar
  68. 68.
    Shafi KVPM, et al. Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater. 1998;10(11):3445–50.CrossRefGoogle Scholar
  69. 69.
    Wilson MW, Kerlan RK, Fidleman NA. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite—initial experience with 4 patients. Radiology. 2004;230:287–93.CrossRefPubMedGoogle Scholar
  70. 70.
    Kim H, et al. Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid-conjugated hydrogels containing magnetite nanoparticles. Sci Rep. 2017;7:41090.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother. 2006;7(11):1469–74.CrossRefPubMedGoogle Scholar
  72. 72.
    Rivera E. Current status of liposomal anthracycline therapy in metastatic breast cancer. Clin Breast Cancer. 2003;4:S76–83.CrossRefPubMedGoogle Scholar
  73. 73.
    Rosenthal E, et al. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am J Clin Oncol. 2002;25(1):57–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Loureiro JA, et al. Dual ligand immune liposomes for drug delivery to the brain. Colloids Surf B Biointerfaces. 2015;134:213.CrossRefPubMedGoogle Scholar
  75. 75.
    Rawat M, et al. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29(9):1790–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343–55.CrossRefPubMedGoogle Scholar
  77. 77.
    Batrakova EV, et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer. 1996;74(10):1545.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nakanishi T, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release. 2001;74(1):295–302.CrossRefPubMedGoogle Scholar
  79. 79.
    Li X, et al. TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J Mater Chem. 2011;21(22):7966–73.CrossRefGoogle Scholar
  80. 80.
    Liu K-K, et al. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21(31):315106.CrossRefPubMedGoogle Scholar
  81. 81.
    Huang H, et al. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007;7(11):3305–14.CrossRefPubMedGoogle Scholar
  82. 82.
    Li J, Zhu Y, Li W, Zhang X, Peng Y, Huang Q. Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials. 2010;31(32):8410–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Chow EK, Zhang XQ, Chen M, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med. 2011;3(73):73ra21.CrossRefPubMedGoogle Scholar
  84. 84.
    Chen M, Pierstorff ED, Lam R, et al. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 2009;3(7):2016–22.CrossRefPubMedGoogle Scholar
  85. 85.
    Chang YR, Lee HY, Chen K, et al. Mass production and dynamic imaging fluorescent nanodiamonds. Nat Nanotechnol. 2008;3(5):284–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Gradishar WJ, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23(31):7794–803.Google Scholar
  87. 87.
    Green MR, et al. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17(8):1263–8.Google Scholar
  88. 88.
    Nyman DW, et al. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol. 2005;23(31):7785–93.Google Scholar
  89. 89.
    Li C. Poly(l-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev. 2002;54:695–713.Google Scholar
  90. 90.
    Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;16:347–60.CrossRefGoogle Scholar
  91. 91.
    Cai D, et al. Carbon nanotube-mediated delivery of nucleic acids does not result in non-specific activation of B lymphocytes. Nanotechnology. 2007;18:101–10.Google Scholar
  92. 92.
    Liu Z, Winters M, Holodniy M, Dai H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chem. 2007;46:2023–7.CrossRefGoogle Scholar
  93. 93.
    Pantarotto D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl. 2004;43:5242–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Scientific Technician-2Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations