Image-Guided Therapy

  • Asahi TomitakaEmail author
  • Hamed Arami
  • Yasushi Takemura
  • Madhavan Nair


Image-guided therapy using nanoparticles have been used for various therapeutic applications such as drug and gene delivery, hyperthermia, and photodynamic therapy. These image-guided approaches help to achieve more efficient treatments by visualizing biodistribution of therapeutic agents and quantifying them at targeted tissues. This allows not only monitoring of their accumulation at targeted sites, but also highly localized treatments by controlled activation of therapeutic agents at the desired tissues, when needed. Here, we summarize the imaging modalities used for image-guided therapies and discuss recent advances on nanoparticle-based image-guided therapies.


Image-guided therapy Drug delivery Hyperthermia Photodynamic therapy Nanomedicine 


  1. 1.
    Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7(6):1899–912.CrossRefPubMedGoogle Scholar
  2. 2.
    Cormode DP, Skajaa T, Fayad ZA, Mulder WJM. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol. 2009;29(7):992–1000.CrossRefPubMedGoogle Scholar
  3. 3.
    Barenholz (Chezy) Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.CrossRefGoogle Scholar
  4. 4.
    Bin Na H, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21(21):2133–48.CrossRefGoogle Scholar
  5. 5.
    James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou Z, Lu Z-R. Gadolinium-based contrast agents for MR cancer imaging. Wiley Interdiscp Rev Nanomed Nanobiotechnol. 2013;5(1):1–18.CrossRefGoogle Scholar
  7. 7.
    Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci. 2013;14(5):10591–607.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR Biomed. 2013;26(7):728–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N. Gadolinium-loaded polymeric nanoparticles modified with anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials. 2011;32(22):5167–76.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim KS, Park W, Hu J, Bae YH, Na K. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials. 2014;35(1):337–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Korkusuz H, Ulbrich K, Welzel K, Koeberle V, Watcharin W, Bahr U, Chernikov V, Knobloch T, Petersen S, Huebner F, Ackermann H, Gelperina S, Kromen W, Hammerstingl R, Haupenthal J, Gruenwald F, Fiehler J, Zeuzem S, Kreuter J, Vogl TJ, Piiper A. Transferrin-coated gadolinium nanoparticles as MRI contrast agent. Mol Imaging Biol. 2013;15(2):148–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Kucheryavy P, He J, John VT, Maharjan P, Spinu L, Goloverda GZ, Kolesnichenko VL. Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir. 2013;29(2):710–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44:8576–607.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shin T, Choi J, Yun S, Kim I, Song H, Kim Y. T 1 and T 2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano. 2014;8(4):3393–401.CrossRefPubMedGoogle Scholar
  16. 16.
    Szpak A, Fiejdasz S, Prendota W, Strączek T, Kapusta C, Szmyd J, Nowakowska M, Zapotoczny S. T1–T2 dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res. 2014;16(11):1–11.CrossRefGoogle Scholar
  17. 17.
    Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu Y, Ai K, Lu L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res. 2012;45(10):1817–27.CrossRefPubMedGoogle Scholar
  19. 19.
    Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Badea CT, Athreya KK, Espinosa G, Clark D, Ghafoori AP, Li Y, Kirsch DG, Johnson GA, Annapragada A, Ghaghada KB. Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLoS One. 2012;7(4):1–7.CrossRefGoogle Scholar
  21. 21.
    de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H. Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials. 2010;31(25):6537–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Ai K, Liu Y, Liu J, Yuan Q, He Y, Lu L. Large-scale synthesis of bi 2S 3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv Mater. 2011;23(42):4886–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L. A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chemie Int Ed Engl. 2012;51(6):1437–42.CrossRefGoogle Scholar
  24. 24.
    Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–96.CrossRefPubMedGoogle Scholar
  25. 25.
    Sun IC, Na JH, Jeong SY, Kim DE, Kwon IC, Choi K, Ahn CH, Kim K. Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging. Pharm Res. 2014;31(6):1418–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Townsend DW. Physical principles and technology of clinical PET imaging. Ann Acad Med Singap. 2004;33(2):133–45.PubMedGoogle Scholar
  27. 27.
    Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Thorek DLJ, Ulmert D, Diop N-FM, Lupu ME, Doran MG, Huang R, Abou DS, Larson SM, Grimm J. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun. 2014;5:3097.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, Meyerand ME, Nickles RJ, Cai W. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR zimaging. Adv Mater. 2014;26(30):5119–23.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chan V, Perlas A. Basics of ultrasound imaging. In: Narouze SN, editor. Atlas of ultrasound-guided procedures in interventional pain management. Berlin: Springer; 2011. p. 13–20.CrossRefGoogle Scholar
  31. 31.
    Khokhlova TD, Haider Y, Hwang JH. Therapeutic potential of ultrasound microbubbles in gastrointestinal oncology: recent advances and future prospects. Therap Adv Gastroenterol. 2015;8(6):384–94.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu D, Huang L, Jiang MS, Jiang H. Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int J Mol Sci. 2014;15(12):23616–39.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tomitaka A, Arami H, Gandhi S, Krishnan KM. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic. Nanoscale. 2015;7:16890–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77(4):041101.CrossRefGoogle Scholar
  35. 35.
    Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. Prog Eletromagnic Res. 2014;147(May):1–22.Google Scholar
  36. 36.
    Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008;452:580–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399:3–27.CrossRefPubMedGoogle Scholar
  38. 38.
    Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J. Magnetic particle imaging: current developments and future directions. Int J Nanomedicine. 2015;10:3097–114.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, Conolly SM. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Knopp T, Buzug TM. Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation. Berlin: Springer; 2012.CrossRefGoogle Scholar
  41. 41.
    Zhu J, Lu Y, Li Y, Jiang J, Cheng L, Liu Z, Guo L, Pan Y, Gu H. Synthesis of au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale. 2014;6(1):199–202.CrossRefPubMedGoogle Scholar
  42. 42.
    Liang SY, Zhou Q, Wang M, Zhu YH, Wu QZ, Yang XL. Water-soluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomedicine. 2015;10:2325–33.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM, Krishnan KM. Vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials. 2015;52:251–61.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, Song X, Goel S. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS nano. 2015;9:950–60.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation-a new cutting edge. Nat Rev Cancer. 2013;13(9):653–62.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zheng J, Muhanna N, De Souza R, Wada H, Chan H, Akens MK, Anayama T, Yasufuku K, Serra S, Irish J, Allen C, Jaffray D. A multimodal nano agent for image-guided cancer surgery. Biomaterials. 2015;67:160–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.PubMedGoogle Scholar
  48. 48.
    Xi L, Zhou G, Gao N, Yang L, a Gonzalo D, Hughes SJ, Jiang H. Photoacoustic and fluorescence image-guided surgery using a multifunctional targeted nanoprobe. Ann Surg Oncol. 2014;21:1602–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Scoggins CR, Chagpar AB, Martin RCG, McMasters KM. Should sentinel lymph-node biopsy be used routinely for staging melanoma and breast cancers? Nat Clin Pract Oncol. 2005;2(9):448–55.CrossRefPubMedGoogle Scholar
  50. 50.
    Bradbury MS, Phillips E, Montero PH, Cheal SM, Stambuk H, Durack JC, Sofocleous CT, Meester RJC, Wiesner U, Patel S. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb). 2013;5(1):74–86.CrossRefGoogle Scholar
  51. 51.
    Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.CrossRefPubMedGoogle Scholar
  52. 52.
    de Smet M, Langereis S, van den Bosch S, Grüll H. Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release. 2010;143(1):120–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Chen F, Hong H, Zhang Y, Valdovinos HF, Shi S, Kwon GS, Al CET. In Vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 2013;7(10):9027–39.CrossRefPubMedGoogle Scholar
  54. 54.
    Chen K-J, Chaung E-Y, Wey S-P, Lin K-J, Cheng F, Lin C-C, Liu H-L, Tseng H-W, Liu C-P, Wei M-C, Liu C-M, Sung H-W. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor specific chemotherapy. ACS Nano. 2014;8(5):5105–15.CrossRefPubMedGoogle Scholar
  55. 55.
    Pacheco-Torres J, Mukherjee N, Walko M, López-Larrubia P, Ballesteros P, Cerdan S, Kocer A. Image guided drug release from pH-sensitive ion channel-functionalized stealth liposomes into an in vivo glioblastoma model. Nanomedicine. 2015;11(6):1345–54.CrossRefPubMedGoogle Scholar
  56. 56.
    Nance E, Timbie K, Miller GW, Song J, Louttit C, Klibanov AL, Shih TY, Swaminathan G, Tamargo RJ, Woodworth GF, Hanes J, Price RJ. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood–brain barrier using MRI-guided focused ultrasound. J Control Release. 2014;189:123–32.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol Pharm. 2015;12(2):314–21.CrossRefPubMedGoogle Scholar
  58. 58.
    Kozielski KL, Tzeng SY, Hurtado De Mendoza BA, Green JJ. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. 2014;8(4):3232–41.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liang Y, Liu Z, Shuai X, Wang W, Liu J, Bi W, Wang C, Jing X, Liu Y, Tao E. Delivery of cationic polymer-siRNA nanoparticles for gene therapies in neural regeneration. Biochem Biophys Res Commun. 2012;421(4):690–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, Park IK, Kim WJ. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials. 2010;31(14):4204–13.CrossRefPubMedGoogle Scholar
  61. 61.
    Kami D, Kitani T, Kishida T, Mazda O, Toyoda M, Tomitaka A, Ota S, Ishii R, Takemura Y, Watanabe M, Umezawa A, Gojo S. Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer. Nanomedicine. 2014;10(6):1165–74.CrossRefPubMedGoogle Scholar
  62. 62.
    He L, Feng L, Cheng L, Liu Y, Li Z, Peng R, Li Y, Guo L, Liu Z. Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and serum-enhanced gene delivery. ACS Appl Mater Interfaces. 2013;5(20):10381–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Wang Q, Li J, An S, Chen Y, Jiang C, Wang X. Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer. Int J Nanomedicine. 2015;10:4479–90.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hildebrandt B. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33–56.CrossRefPubMedGoogle Scholar
  65. 65.
    Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth. 2009;25(1):3–20.CrossRefGoogle Scholar
  66. 66.
    Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol. 2007;19(6):418–26.CrossRefGoogle Scholar
  67. 67.
    Tomitaka A, Takemura Y. Measurement of specific loss power from intracellular magnetic nanoparticles for hyperthermia. J Pers Nanomedicine. 2015;1(1):33–7.Google Scholar
  68. 68.
    Huang X, El-Sayed M a. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1(1):13–28.CrossRefGoogle Scholar
  69. 69.
    Zhang X-D, Wu D, Shen X, Chen J, Sun Y-M, Liu P-X, Liang X-J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33:6408–19.CrossRefPubMedGoogle Scholar
  70. 70.
    Baldi G, Ravagli C, Mazzantini F, Loudos G, Adan J, Masa M, Psimadas D, Locatelli E, Innocenti C, Sangregorio C. In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor containing magnetic nanoparticles. Int J Nanomedicine. 2014;9(1):3037–56.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK, Fales AM, Choi J, Whitley MJ, Zhao X, Qi Y, Ma Y, Vaidyanathan G, Zalutsky MR, Kirsch DG, Badea CT, Vo-Dinh T. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5(9):946–60.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yan F, Wu H, Liu H, Deng Z, Liu H, Duan W, Liu X, Zheng H. Molecular imaging-guided photothermal / photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Control Release. 2016;224:217–28.CrossRefPubMedGoogle Scholar
  73. 73.
    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bozzini G, Colin P, Betrouni N, Nevoux P, Ouzzane A, Puech P, Villers A, Mordon S. Photodynamic therapy in urology: what can we do now and where are we heading? Photodiagn Photodyn Ther. 2012;9(3):261–73.CrossRefGoogle Scholar
  75. 75.
    Kim H, Mun S, Choi Y. Photosensitizer-conjugated polymeric nanoparticles for redox-responsive fluorescence imaging and photodynamic therapy. J Mater Chem B. 2013;1:429–31.CrossRefGoogle Scholar
  76. 76.
    Taratula O, Doddapaneni BS, Schumann C, Li X, Bracha S, Milovancev M, Alani AWG, Taratula O. Naphthalocyanine-based biodegradable polymeric nanoparticles for image-guided combinatorial phototherapy. Chem Mater. 2015;27(17):6155–65.CrossRefGoogle Scholar
  77. 77.
    Yan X, Niu G, Lin J, Jin AJ, Hu H, Tang Y, Zhang Y, Wu A, Lu J, Zhang S, Huang P, Shen B, Chen X. Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. Biomaterials. 2015;42:94–102.CrossRefPubMedGoogle Scholar
  78. 78.
    Lv R, Yang P, He F, Gai S, Yang G, Dai Y, Hou Z, Lin J. Biomaterials an imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release. Biomaterials. 2015;63:115–27.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Asahi Tomitaka
    • 1
    Email author
  • Hamed Arami
    • 2
    • 3
  • Yasushi Takemura
    • 4
  • Madhavan Nair
    • 1
  1. 1.Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of MedicineFlorida International UniversityMiamiUSA
  2. 2.Molecular Imaging Program at Stanford (MIPS), The James H Clark CenterStanford UniversityCAUSA
  3. 3.Department of RadiologyStanford University School of MedicineCAUSA
  4. 4.Department of Electrical and Computer EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations