Advertisement

Nanotechnology for Therapeutics

  • Anujit GhosalEmail author
  • Arti Vashist
  • Shivani Tiwari
  • Eram Sharmin
  • Sharif AhmadEmail author
  • Jaydeep Bhattacharya
Chapter

Abstract

Tremendous growth in the field of pharmacology and therapeutics has been observed due to revolutionised development of novel drug delivery systems predominantly based on “Nanotechnology”. Treatment of wide varieties of diseases is made possible by miniaturisation of drug delivery systems. Nanotechnology delivers a unique approach, which promises higher drug efficacy, targeted drug delivery, on demand delivery, biocompatibility, etc. The importance of nanotechnology can be visualised by its ability of addressing several problems in central areas of biomedical, chemical, mechanical and electronics. Here, we discuss how nano-therapeutics can be fruitful for the treatment of brain diseases such as human immunodeficiency virus (HIV), Parkinson’s, cancer, Alzheimer and their drug delivery mechanism. In this regard, the challenges involved and required future developments in drug delivery systems becomes few important topics to be worked on for expanding the utilization of nano-therapeutics.

Graphical Abstract

The transition of conventional theruputics to highly effective nanotherapeutics

Graphical Abstract

Keywords

Nanotechnology Nano neurotherapeutics Nanodevices Nanobots Drug deliveery systems 

Notes

Acknowledgements

The authors appreciate the financial support received from the Council of Scientific and Industrial research (CSIR), New Delhi, India for this work. I am also thankful for the financial support given by Department of Chemistry, School of Basic and Applied Sciences, Galgotias University, Gautam Buddh Nagar, Uttar Pradesh, India. Dr. Anujit Ghosal also expresses his sincere gratitude to the Government of India, Science and Engineering Research Board (SERB) (NPDF/2016/003866).

References

  1. 1.
    Kabu S, Gao Y, Kwon BK, Labhasetwar V. J Control Release. 2015;219:141–54.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kamaly N, Yameen B, Wu J, Farokhzad OC. Chem Rev. 2016;116:2602–63.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF, Sarkaria JN. Neuro-Oncol. 2016;18:27–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Vashist A, Kaushik A, Vashist A, Jayant RD, Tomitaka A, Ahmad S, Gupta Y, Nair M. Biomater Sci. 2016;4:1535.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nair M, Jayant RD, Kaushik A, Sagar V. Adv Drug Deliv Rev. 2016;103:202.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rao V. Transl Biomed. 2016;7:2.Google Scholar
  7. 7.
    Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, Chen J. Chem Soc Rev. 2016;45:1225–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Srikanth M, Kessler JA. Nat Rev Neurol. 2012;8:307–18.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jung YC, Bhushan B. Nanotechnology. 2006;17:4970.CrossRefGoogle Scholar
  10. 10.
    Sharmin E, Akram D, Vashist A, Wani M, Ahmad A, Zafar F, Ahmad S. Chemistry of phytopotentials: Health, energy and environmental perspectives. Berlin: Springer; 2012. p. 223–7.CrossRefGoogle Scholar
  11. 11.
    Park K. J Control Release. 2007;120:1.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Seeman NC. Chem Biol. 2003;10:1151–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Shi J, Votruba AR, Farokhzad OC, Langer R. Nano Lett. 2010;10:3223–30.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Koo OM, Rubinstein I, Onyuksel H. Nanomedicine. 2005;1:193–212.CrossRefPubMedGoogle Scholar
  15. 15.
    Alderton GK. Nat Rev Cancer. 2016;16:5–5.Google Scholar
  16. 16.
    DeVience SJ, Pham LM, Lovchinsky I, Sushkov AO, Bar-Gill N, Belthangady C, Casola F, Corbett M, Zhang H, Lukin M. Nat Nanotechnol. 2015;10:129–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Vashist A, Shahabuddin S, Gupta YK, Ahmad S. J Mater Chem B. 2013;1:168–78.CrossRefGoogle Scholar
  18. 18.
    Delalat B, Sheppard VC, Ghaemi SR, Rao S, Prestidge CA, McPhee G, Rogers M-L, Donoghue JF, Pillay V, Johns TG. Nat Commun. 2015;6:8791.CrossRefPubMedGoogle Scholar
  19. 19.
    Fonseca-Santos B, Gremião MPD, Chorilli M. Int J Nanomedicine. 2015;10:4981.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez A-I. Biomaterials. 2016;103:229–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Sharma R, Agrawal U, Mody N, Vyas SP. Biotechnol Adv. 2015;33:64–79.CrossRefPubMedGoogle Scholar
  22. 22.
    Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. ACS Nano. 2015;9:4686–97.CrossRefPubMedGoogle Scholar
  23. 23.
    Kaushik NK, Kaushik N, Pardeshi S, Sharma JG, Lee SH, Choi EH. Mar Drugs. 2015;13:6792–817.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ghosal A, Shah J, Kotnala RK, Ahmad S. J Mater Chem A. 2013;1:12868–78.CrossRefGoogle Scholar
  25. 25.
    Khan R, Kaushik A. Nanobiotechnology for sensing applications: from lab to field. Oakville, ON: Apple Academic; 2016. p. 265–86.CrossRefGoogle Scholar
  26. 26.
    Vasudev A, Kaushik A, Tomizawa Y, Norena N, Bhansali S. Sensors Actuators B Chem. 2013;182:139–46.CrossRefGoogle Scholar
  27. 27.
    Leondes CT. Mems/Nems: (1) Handbook techniques and applications design methods, (2) Fabrication techniques, (3) manufacturing methods, (4) Sensors and actuators, (5) Medical applications and MOEMS. New York: Springer Science & Business Media; 2007.Google Scholar
  28. 28.
    Manickam P, Kaushik A, Karunakaran C, Bhansali S. Biosens Bioelectron. 2017;87:654–68.CrossRefPubMedGoogle Scholar
  29. 29.
    Vashist A, Ahmad S. Curr Pharm Biotechnol. 2015;16:606–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Vashist A, Vashist A, Gupta Y, Ahmad S. J Mater Chem B. 2014;2:147–66.CrossRefGoogle Scholar
  31. 31.
    Korotcenkov G, Cho B. Porous silicon: from formation to application: biomedical and sensor applications. Biomed Sens Appl. 2016;2, 299Google Scholar
  32. 32.
    Vashist A, Ghosal A, Gupta YK, Ahmad S, Nair M. Nanocomposite hydrogels for neuro drug delivery. J Neuroimmune Pharmacol. 2016;11:s48–s49. New York: Springer.Google Scholar
  33. 33.
    Rawat NK, Ghosal A, Ahmad S. RSC Adv. 2014;4:50594–605.CrossRefGoogle Scholar
  34. 34.
    Ghosal A, Rahman OU, Ahmad S. High-performance soya polyurethane networked silica hybrid nanocomposite coatings. Ind Eng Chem Research. 2015;54:12770–87.Google Scholar
  35. 35.
    Sharmin E, Akram D, Ghosal A, ur Rahman O, Zafar F, Ahmad S. Prog Org Coat. 2011;72:469–72.CrossRefGoogle Scholar
  36. 36.
    Muthukumaran G, Ramachandraiah U, Samuel D. In Advanced Materials Research, 2015;1086:61–7.Google Scholar
  37. 37.
    Vashist A, Ahmad S. Orient J Chem. 2013;29:861–70.CrossRefGoogle Scholar
  38. 38.
    Masoomi MY, Morsali A. Coord Chem Rev. 2012;256:2921–43.CrossRefGoogle Scholar
  39. 39.
    Ariga K, Ito H, Hill JP, Tsukube H. Chem Soc Rev. 2012;41:5800–35.CrossRefPubMedGoogle Scholar
  40. 40.
    Delgado JL, Herranz MÁ, Martin N. J Mater Chem. 2008;18:1417–26.CrossRefGoogle Scholar
  41. 41.
    Hwang SR, Kim K. Arch Pharm Res. 2014;37:24–30.CrossRefPubMedGoogle Scholar
  42. 42.
    Abdelmohsen LK, Peng F, Tu Y, Wilson DA. J Mater Chem B. 2014;2:2395–408.CrossRefGoogle Scholar
  43. 43.
    Brzeziński M, Biela T. Polym Int. 2015;64:1667–75.CrossRefGoogle Scholar
  44. 44.
    Hartley JM, Kopeček J, Nam J, Jung S, Hwang S, Song J, Kim S, Sultana S, Sultana S, Islan GA. Smart pharmaceutical nanocarriers. Singapore: World Scientific; 2016. p. 373–413.CrossRefGoogle Scholar
  45. 45.
    Phillips AJ. Developing a predictable regulatory path for nanomedicines by accurate and objective particle measurement. In: Braddock M, editor. Nanomedicines. Cambridge: Royal Society of Chemistry. 2016;253–80.Google Scholar
  46. 46.
    Jayant RD, Sosa D, Kaushik A, Atluri V, Vashist A, Tomitaka A, Nair M. Expert Opin Drug Deliv. 2016;13:1433.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kaushik A, Jayant RD, Nair M. Int J Nanomedicine. 2016;11:4317.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bawa R, Audette GF, Rubinstein I. Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. Boca Raton: CRC; 2016.Google Scholar
  49. 49.
    Dixit CK, Kaushik A. Nanobiotechnology for sensing applications: from lab to field. Oakville, ON: Apple Academic; 2016. p. 351–4.CrossRefGoogle Scholar
  50. 50.
    Akhavan O, Ghaderi E. Enhancement of antibacterial properties of Ag nanorods by electric field. Sci Technol Adv Mater. 2016;10:015003.Google Scholar
  51. 51.
    Zhou R. Nanomedicine. 2016;12:468.CrossRefGoogle Scholar
  52. 52.
    Zheng W, Wei M, Li S, Le W. Nanomedicine. 2016;11:1417–30.CrossRefPubMedGoogle Scholar
  53. 53.
    Chen Z, Ma L, Liu Y, Chen C. Theranostics. 2012;2:238–50.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gutiérrez L, Costo R, Grüttner C, Westphal F, Gehrke N, Heinke D, Fornara A, Pankhurst Q, Johansson C, Veintemillas-Verdaguer S. Dalton Trans. 2015;44:2943–52.CrossRefPubMedGoogle Scholar
  55. 55.
    Soenen SJ, Parak WJ, Rejman J, Manshian B. Chem Rev. 2015;115:2109–35.CrossRefPubMedGoogle Scholar
  56. 56.
    Kaushik A, Vabbina PK, Atluri V, Shah P, Vashist A, Jayant RD, Yandart A, Nair M. Biosens Bioelectron. 2016;86:426–31.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Such GK, Yan Y, Johnston AP, Gunawan ST, Caruso F. Adv Mater. 2015;27:2278–97.CrossRefPubMedGoogle Scholar
  58. 58.
    Kaushik A, Tiwari S, Jayant RD, Vashist A, Nikkhah-Moshaie R, El-Hage N, Nair M. Trends Biotechnol. 2017, 35:308–17.Google Scholar
  59. 59.
    Singh R, Norret M, House MJ, Galabura Y, Bradshaw M, Ho D, Woodward RC, Pierre TGS, Luzinov I, Smith NM. Small. 2016;12:351–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Hanafi-Bojd MY, Jaafari MR, Ramezanian N, Xue M, Amin M, Shahtahmassebi N, Malaekeh-Nikouei B. Eur J Pharm Biopharm. 2015;89:248–58.CrossRefPubMedGoogle Scholar
  61. 61.
    Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Colloids Surf B Biointerfaces. 2016;145:8–13.CrossRefPubMedGoogle Scholar
  62. 62.
    Mary TA, Shanthi K, Vimala K, Soundarapandian K. RSC Adv. 2016;6:22936–49.CrossRefGoogle Scholar
  63. 63.
    Desai D, Prabhakar N, Mamaeva V, Karaman DŞ, Lähdeniemi IA, Sahlgren C, Rosenholm JM, Toivola DM. Int J Nanomedicine. 2016;11:299.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Pathak Y, Thassu D. Drug delivery nanoparticles formulation and characterization. Boca Raton, FL: CRC; 2016.Google Scholar
  65. 65.
    Vij N, Min T, Bodas M, Gorde A, Roy I. Nanomedicine. 2016;12:2415–27.CrossRefPubMedGoogle Scholar
  66. 66.
    Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON. Biosens Bioelectron. 2010;25:1254–63.CrossRefPubMedGoogle Scholar
  67. 67.
    Zamani M, Prabhakaran MP, Ramakrishna S. Int J Nanomedicine. 2013;8:2997–3017.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang Q, Cheng H, Peng H, Zhou H, Li PY, Langer R. Adv Drug Deliv Rev. 2015;91:125–40.CrossRefPubMedGoogle Scholar
  69. 69.
    Xing J-F, Zheng M-L, Duan X-M. Chem Soc Rev. 2015;44:5031–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Woitalla D, Müller T, Benz S, Horowski R, Przuntek H. Focus on extrapyramidal dysfunction. Wien: Springer; 2004. p. 89–95.CrossRefGoogle Scholar
  71. 71.
    Deshmukh AM, Dixit A, Kumar P, Bindra V. U.S. Patent 14/893,020. 2014 May 19. 2016.Google Scholar
  72. 72.
    Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. J Drug Target. 2015;23:775–88.CrossRefPubMedGoogle Scholar
  73. 73.
    Ali J, Ali M, Baboota S, Kaur Sahni J, Ramassamy C, Dao L. Curr Pharm Des. 2010;16:1644–53.CrossRefPubMedGoogle Scholar
  74. 74.
    Helie S, Chakravarthy S, Moustafa AA. Front Comput Neurosci. 2015;7:174.Google Scholar
  75. 75.
    Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Biosens Bioelectron. 2016;80:273–87.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lee JJ, Oh JS, Ham JH, Lee DH, Lee I, Sohn YH, Kim JS, Lee PH. Neurobiol Aging. 2016;38:197–204.CrossRefPubMedGoogle Scholar
  77. 77.
    Kaushik A, Tiwari S, Jayant RD, Marty A, Nair M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens Bioelectron. 2016;75:254–72.Google Scholar
  78. 78.
    Giuffrida A, Martinez A. Levodopa-induced dyskinesia in Parkinson’s disease. London: Springer; 2014. p. 245–64.Google Scholar
  79. 79.
    Müller T. J Parkinsonism Restless Legs Synd. 2015;5:11–7.CrossRefGoogle Scholar
  80. 80.
    World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Geneva: WHO; 2013.Google Scholar
  81. 81.
    Chiappetta DA, Hocht C, Taira C, Sosnik A. Nanomedicine. 2010;5:11–23.CrossRefPubMedGoogle Scholar
  82. 82.
    Dixit C, Kaushik AK. Microfluidics for biologists: fundamentals and applications. Switzerland: Springer; 2016.CrossRefGoogle Scholar
  83. 83.
    Yadavalli T, Shukla D. Nanomedicine. 2016;13:219. doi: 10.1016/j.nano.2016.08.016.CrossRefPubMedGoogle Scholar
  84. 84.
    Chris GW, Duu-Jong L. Nanotechnology. 2016;27:365101.CrossRefGoogle Scholar
  85. 85.
    Whiteley CG, Shing CY, Kuo CC, Lee D-J. J Taiwan Inst Chem Eng. 2016;60:83–91.CrossRefGoogle Scholar
  86. 86.
    Wong PT, Choi SK. Chem Rev. 2015;115:3388–432.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anujit Ghosal
    • 1
    • 2
    Email author
  • Arti Vashist
    • 3
  • Shivani Tiwari
    • 1
  • Eram Sharmin
    • 4
  • Sharif Ahmad
    • 5
    Email author
  • Jaydeep Bhattacharya
    • 2
  1. 1.Department of Chemistry, School of Basic and Applied SciencesGalgotias UniversityGautam Buddh NagarIndia
  2. 2.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of MedicineFlorida International UniversityMiamiUSA
  4. 4.Department of Pharmaceutical ChemistryCollege of PharmacyRiyadhKingdom of Saudi Arabia
  5. 5.Department of Chemistry, Materials Research LaboratoryJamia Millia IslamiaNew DelhiIndia

Personalised recommendations