Personalized Therapeutics: First Take Home Messages

  • Venkata AtluriEmail author
  • Ravi Doddapaneni
  • Eliset Perez


Personalized therapeutics is the emerging field in the medicine based on the individual’s unique characteristics like genetic profile/alterations, epigenetic modifications, clinical symptoms, disease biomarkers and environmental factors which play a significant role in tailoring their therapies. Although there is a significant progress in personalized therapeutics towards the treatment of few genetic disorders and life threatening diseases, there is still plenty of work to be done to make the field progress in the treatment of various diseases and make these approaches useful to patients in rural areas as well. In this chapter we have briefed few updates in the field of personalized therapeutics application in the treatment of cancer, cystic fibrosis, stroke, psychiatry and asthma.


Personalized medicine Chronic diseases Next generation sequencing Therapeutics 



This work was supported by the Herbert Wertheim College of Medicine (HWCOM) Pilot Grant (Project ID # 800008539), Florida International University, Miami, FL.


  1. 1.
    Hamburg MA. Paving the way for personalized medicine: FDA’S role in a new era of medical product development. Silver Spring, MD: FDA; 2013. [cited 2017 04/12] Available from: Google Scholar
  2. 2.
    Drebin JA, et al. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell. 1985;41(3):695–706.CrossRefGoogle Scholar
  3. 3.
    Vogel CL, et al. Efficacy and safety of Trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.CrossRefPubMedGoogle Scholar
  4. 4.
    Seidman AD, et al. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with Trastuzumab for all HER-2 overexpressors and random assignment to Trastuzumab or not in HER-2 nonoverexpressors: final results of cancer and leukemia group B protocol 9840. J Clin Oncol. 2008;26(10):1642–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Baehner FL, et al. Genomic signatures of cancer: basis for individualized risk assessment, selective staging and therapy. J Surg Oncol. 2011;103(6):563–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Moorcraft SY, Smyth EC, Cunningham D. The role of personalized medicine in metastatic colorectal cancer: an evolving landscape. Ther Adv Gastroenterol. 2013;6(5):381–95.CrossRefGoogle Scholar
  7. 7.
    Ribic CM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–57.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Braun MS, et al. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol. 2008;26(16):2690–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Palomaki GE, et al. Can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? An evidence-based review. Genet Med. 2009;11(1):21–34.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Amado RG, et al. Wild-type KRAS is required for Panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.CrossRefPubMedGoogle Scholar
  11. 11.
    Samikkannu T, Atluri VS, Nair MP. HIV and cocaine impact glial metabolism: energy sensor AMP-activated protein kinase role in mitochondrial biogenesis and epigenetic remodeling. Sci Rep. 2016;6:31784.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Hensing T, et al. A personalized treatment for lung cancer: molecular pathways, targeted therapies, and genomic characterization. Adv Exp Med Biol. 2014;799:85–117.CrossRefPubMedGoogle Scholar
  14. 14.
    Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wright JE, Rose GE, Garner A. Primary malignant neoplasms of the lacrimal gland. Br J Ophthalmol. 1992;76(7):401–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khan AJ, et al. Adenoid cystic carcinoma: a retrospective clinical review. Int J Cancer. 2001;96(3):149–58.CrossRefPubMedGoogle Scholar
  17. 17.
    Stephens PJ, et al. Whole exome sequencing of adenoid cystic carcinoma. J Clin Invest. 2013;123(7):2965–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ho AS, et al. The mutational landscape of adenoid cystic carcinoma. Nat Genet. 2013;45(7):791–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    von Holstein SL, et al. Adenoid cystic carcinoma of the lacrimal gland: MYB gene activation, genomic imbalances, and clinical characteristics. Ophthalmology. 2013;120(10):2130–8.CrossRefGoogle Scholar
  20. 20.
    Bompadre SG, Li M, Hwang TC. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog. J Biol Chem. 2008;283(9):5364–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Rachul C, Toews M, Caulfield T. Controversies with Kalydeco: newspaper coverage in Canada and the United States of the cystic fibrosis “wonder drug”. J Cyst Fibros. 2016;15(5):624–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Eckford PD, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem. 2012;287(44):36639–49.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Van Goor F, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci. 2009;106(44):18825–30.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sloane PA, Rowe SM. Cystic fibrosis transmembrane conductance regulator protein repair as a therapeutic strategy in cystic fibrosis. Curr Opin Pulm Med. 2010;16(6):591–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dorfman R, et al. Application of personalized medicine to chronic disease: a feasibility assessment. Clin Transl Med. 2013;2(1):16.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mega JL, et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010;376(9749):1312–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wiviott SD, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357(20):2001–15.CrossRefPubMedGoogle Scholar
  28. 28.
    Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med. 2013;11:132.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yu A-M, et al. Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics. 2003;13:307.CrossRefPubMedGoogle Scholar
  30. 30.
    Mrazek DA, et al. SLC6A4 variation and citalopram response. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:341.CrossRefPubMedGoogle Scholar
  31. 31.
    Min W, et al. Monoamine transporter gene polymorphisms affect susceptibility to depression and predict antidepressant response. Psychopharmacology. 2009;205:409.CrossRefPubMedGoogle Scholar
  32. 32.
    Huezo-Diaz P, et al. Moderation of antidepressant response by the serotonin transporter gene. Br J Psychiatry. 2009;195:30.CrossRefPubMedGoogle Scholar
  33. 33.
    Bozina N, et al. Association study of paroxetine therapeutic response with SERT gene polymorphisms in patients with major depressive disorder. World J Biol Psychiatry. 2008;9:190.CrossRefPubMedGoogle Scholar
  34. 34.
    Smeraldi E, et al. Serotonin transporter gene-linked polymorphic region: possible pharmacogenetic implications of rare variants. Psychiatr Genet. 2006;16:153.CrossRefPubMedGoogle Scholar
  35. 35.
    Smeraldi E, et al. Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry. 1998;3:508.CrossRefPubMedGoogle Scholar
  36. 36.
    Hong C-J, et al. Response to fluoxetine and serotonin 1A receptor (C-1019G) polymorphism in Taiwan Chinese major depressive disorder. Pharmacogenomics J. 2006;6:27.CrossRefPubMedGoogle Scholar
  37. 37.
    Kato M, et al. Effects of the serotonin type 2A, 3A and 3B receptor and the serotonin transporter genes on paroxetine and fluvoxamine efficacy and adverse drug reactions in depressed Japanese patients. Neuropsychobiology. 2006;53:186.CrossRefPubMedGoogle Scholar
  38. 38.
    Kato M, et al. Controlled clinical comparison of paroxetine and fluvoxamine considering the serotonin transporter promoter polymorphism. Int Clin Psychopharmacol. 2005;20:151.CrossRefPubMedGoogle Scholar
  39. 39.
    Rausch JL, et al. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol Psychiatry. 2002;51:723.CrossRefPubMedGoogle Scholar
  40. 40.
    Zanardi R, et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol Psychiatry. 2001;50:323.CrossRefPubMedGoogle Scholar
  41. 41.
    Serretti A, et al. Further evidence of a combined effect of SERTPR and TPH on SSRIs response in mood disorders. Am J Med Genet B Neuropsychiatr Genet. 2004;129B:36.CrossRefPubMedGoogle Scholar
  42. 42.
    Murphy GM, et al. Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry. 2004;61:1163.CrossRefPubMedGoogle Scholar
  43. 43.
    Smits K, et al. Serotonin transporter polymorphisms and the occurrence of adverse events during treatment with selective serotonin reuptake inhibitors. Int Clin Psychopharmacol. 2007;22:137.CrossRefPubMedGoogle Scholar
  44. 44.
    Smits KM, et al. The influence of 5-HTTLPR and STin2 polymorphisms in the serotonin transporter gene on treatment effect of selective serotonin reuptake inhibitors in depressive patients. Psychiatr Genet. 2008;18:184.CrossRefPubMedGoogle Scholar
  45. 45.
    Durham LK, et al. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology. 2004;174:525.CrossRefPubMedGoogle Scholar
  46. 46.
    Arias B, et al. 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J Clin Psychopharmacol. 2003;23:563.CrossRefPubMedGoogle Scholar
  47. 47.
    Joyce PR, et al. Age-dependent antidepressant pharmacogenomics: polymorphisms of the serotonin transporter and G protein beta3 subunit as predictors of response to fluoxetine and nortriptyline. Int J Neuropsychopharmacol. 2003;6:339.CrossRefPubMedGoogle Scholar
  48. 48.
    Pollock BG, et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology. 2000;23:587.CrossRefPubMedGoogle Scholar
  49. 49.
    Kim H, et al. Monoamine transporter gene polymorphisms and antidepressant response in koreans with late-life depression. JAMA. 2006;296:1609.CrossRefPubMedGoogle Scholar
  50. 50.
    Yoshida K, et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry. 2004;161:1575.CrossRefPubMedGoogle Scholar
  51. 51.
    Yoshimura R, et al. Rapid response to paroxetine is associated with plasma paroxetine levels at 4 but not 8 weeks of treatment, and is independent of serotonin transporter promoter polymorphism in Japanese depressed patients. Hum Psychopharmacol. 2009;24:489.CrossRefPubMedGoogle Scholar
  52. 52.
    Ng CH, et al. Serotonin transporter polymorphisms and clinical response to sertraline across ethnicities. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30:953.CrossRefGoogle Scholar
  53. 53.
    Yu YW-Y, et al. Association study of two serotonin 1A receptor gene polymorphisms and fluoxetine treatment response in Chinese major depressive disorders. Eur Neuropsychopharmacol. 2006;16:498.CrossRefPubMedGoogle Scholar
  54. 54.
    Serretti A, et al. The C(−1019)G polymorphism of the 5-HT1A gene promoter and antidepressant response in mood disorders: preliminary findings. Int J Neuropsychopharmacol. 2004;7:453.CrossRefPubMedGoogle Scholar
  55. 55.
    Kato M, et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:115.CrossRefPubMedGoogle Scholar
  56. 56.
    Levin GM, et al. Assessment of human serotonin 1A receptor polymorphisms and SSRI responsiveness. Mol Diagn Ther. 2007;11:155.CrossRefPubMedGoogle Scholar
  57. 57.
    Suzuki Y, Sawamura K, Someya T. Polymorphisms in the 5-hydroxytryptamine 2A receptor and CytochromeP4502D6 genes synergistically predict fluvoxamine-induced side effects in Japanese depressed patients. Neuropsychopharmacology. 2006;31:825.CrossRefPubMedGoogle Scholar
  58. 58.
    Peters EJ, et al. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry. 2004;9:879.CrossRefPubMedGoogle Scholar
  59. 59.
    Uher R, et al. Genetic predictors of response to antidepressants in the GENDEP project. Pharmacogenomics J. 2009;9:225.CrossRefPubMedGoogle Scholar
  60. 60.
    Peters EJ, et al. Resequencing of serotonin-related genes and association of tagging SNPs to citalopram response. Pharmacogenet Genomics. 2009;19:1.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wilkie MJV, et al. Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J. 2009;9:61.CrossRefPubMedGoogle Scholar
  62. 62.
    McMahon FJ, et al. Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet. 2006;78:804.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Murphy GM, et al. Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry. 2003;160:1830.CrossRefPubMedGoogle Scholar
  64. 64.
    Binder EB, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36:1319.CrossRefPubMedGoogle Scholar
  65. 65.
    Rybakowski JK, et al. Prophylactic effect of lithium in bipolar affective illness may be related to serotonin transporter genotype. Pharmacol Rep. 2005;57:124.PubMedGoogle Scholar
  66. 66.
    Masui T, et al. A possible association between the −116C/G single nucleotide polymorphism of the XBP1 gene and lithium prophylaxis in bipolar disorder. Int J Neuropsychopharmacol. 2006;9:83.CrossRefPubMedGoogle Scholar
  67. 67.
    Benedetti F, et al. Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:631.CrossRefPubMedGoogle Scholar
  68. 68.
    Rybakowski JK, et al. Response to lithium prophylaxis: interaction between serotonin transporter and BDNF genes. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:820.CrossRefPubMedGoogle Scholar
  69. 69.
    Adli M, et al. Response to lithium augmentation in depression is associated with the glycogen synthase kinase 3-beta -50T/C single nucleotide polymorphism. Biol Psychiatry. 2007;62:1295.CrossRefPubMedGoogle Scholar
  70. 70.
    Masui T, et al. A possible association between missense polymorphism of the breakpoint cluster region gene and lithium prophylaxis in bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:204.CrossRefGoogle Scholar
  71. 71.
    Mamdani F, et al. Lithium response and genetic variation in the CREB family of genes. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:500.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Dmitrzak-Weglarz M, et al. Association studies of the BDNF and the NTRK2 gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacogenomics. 2008;9:1595.CrossRefPubMedGoogle Scholar
  73. 73.
    Akinbami OJ, Moorman JE, Liu X. Asthma prevalence, health care use, and mortality: United States, 2005–2009. Washington, DC: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2011.Google Scholar
  74. 74.
    Moffatt MF, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Agusti A, MacNee W. The COPD control panel: towards personalised medicine in COPD. Thorax. 2013;68(7):687–90.CrossRefPubMedGoogle Scholar
  76. 76.
    Repapi E, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42(1):36–44.CrossRefPubMedGoogle Scholar
  77. 77.
    Manichaikul A, et al. Genome-wide study of percent emphysema on computed tomography in the general population. The multi-ethnic study of atherosclerosis lung/SNP health association resource study. Am J Respir Crit Care Med. 2014;189(4):408–18.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Pillai SG, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev. 2011;32(4):177–95.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Venkata Atluri
    • 1
    Email author
  • Ravi Doddapaneni
    • 2
  • Eliset Perez
    • 1
  1. 1.Department of Immunology, Institute of Neuroimmune PharmacologyHerbert Wertheim College of Medicine, Florida International UniversityMiamiUSA
  2. 2.Department of Ophthalmology, Bascom Palmer Eye InstituteUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations