Skip to main content

Biosensing Devices for Personalized Healthcare

  • Chapter
  • First Online:
Advances in Personalized Nanotherapeutics

Abstract

Application of novel biosensor platforms has acquired paramount importance in the field of point-of-care diagnostics, environmental monitoring and drug delivery. The recent biosensor device development using submicron-sized dimensions has opened new horizons for detection of clinical analytes as well as signaling molecules secreted from living cells. Taking advantage of the unique properties of the micro/nano fabrication technology integrated with electrochemical techniques, faster and sensitive biosensors can be developed. The present chapter discusses the basic concepts of electrochemical biosensors, recent developments in the biosensor industry and importance of biosensors in personalized drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Banica F-G. Chemical sensors and biosensors: fundamentals and applications. Chichester: Wiley; 2012.

    Book  Google Scholar 

  2. Malhotra BD, Chaubey A. Biosensors for clinical diagnostics industry. Sens Actuators B. 2003;91:117–27.

    Article  CAS  Google Scholar 

  3. Bellan LM, Wu D, Langer RS. Current trends in nanobiosensor technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3:229–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem. 2007;53:2002–9.

    Article  CAS  PubMed  Google Scholar 

  5. Daggumati P, Matharu Z, Seker E. Effect of nanoporous gold thin film morphology on electrochemical DNA sensing. Anal Chem. 2015;87:8149–56.

    Article  CAS  PubMed  Google Scholar 

  6. Gasparac R, Taft BJ, Lapierre-Devlin MA, Lazareck AD, Xu JM, Kelley SO. Ultrasensitive electrocatalytic DNA detection at two-and three-dimensional nanoelectrodes. J Am Chem Soc. 2004;126:12270–1.

    Article  CAS  PubMed  Google Scholar 

  7. Lapierre-Devlin MA, Asher CL, Taft BJ, Gasparac R, Roberts MA, Kelley SO. Amplified electrocatalysis at DNA-modified nanowires. Nano Lett. 2005;5:1051–5.

    Article  CAS  PubMed  Google Scholar 

  8. Barfidokht A, Gooding JJ. Approaches toward allowing electroanalytical devices to be used in biological fluids. Electroanalysis. 2014;26:1182–96.

    Article  CAS  Google Scholar 

  9. Shin DS, Matharu Z, You J, Siltanen C, Vu T, Raghunathan VK, Stybayeva G, Hill AE, Revzin A. Sensing conductive hydrogels for rapid detection of cytokines in blood. Adv Healthc Mater. 2016;

    Google Scholar 

  10. Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron. 1887-1892;2006:21.

    Google Scholar 

  11. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39:1747–63.

    Article  CAS  PubMed  Google Scholar 

  12. Anandan V, Yang X, Kim E, Rao YL, Zhang G. Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes. J Biol Eng. 2007;1:5–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chaubey A, Malhotra BD. Mediated biosensors. Biosens Bioelectron. 2002;17:441–56.

    Article  CAS  PubMed  Google Scholar 

  14. Cui G, Yoo JH, Woo BW, Kim SS, Cha GS, Nam H. Disposable amperometric glucose sensor electrode with enzyme-immobilized nitrocellulose strip. Talanta. 2001;54:1105–11.

    Article  CAS  PubMed  Google Scholar 

  15. Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 1999;27:4830–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh PS. From sensors to systems: CMOS-integrated electrochemical biosensors. IEEE Access. 2015;3:249–59.

    Article  Google Scholar 

  17. Voldman J, Gray ML, Schmidt MA. Microfabrication in biology and medicine. Annu Rev Biomed Eng. 1999;1:401–25.

    Article  CAS  PubMed  Google Scholar 

  18. Franssila S. Introduction to microfabrication. Chichester: Wiley; 2010.

    Book  Google Scholar 

  19. Matharu Z, Enomoto J, Revzin A. Miniature enzyme-based electrodes for detection of hydrogen peroxide release from alcohol-injured hepatocytes. Anal Chem. 2012;85:932–9.

    Article  PubMed  Google Scholar 

  20. Sung-Yi Y, Suz-Kai H, Yung-Ching H, Chen-Min C, Teh-Lu L, Gwo-Bin L. A cell counting/sorting system incorporated with a microfabricated flow cytometer chip. Meas Sci Technol. 2001;2006:17.

    Google Scholar 

  21. Voldman J, Gray ML, Toner M, Schmidt MA. A microfabrication-based dynamic array cytometer. Anal Chem. 2002;74:3984–90.

    Article  CAS  PubMed  Google Scholar 

  22. Chung TD, Kim HC. Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis. 2007;28:4511–20.

    Article  CAS  PubMed  Google Scholar 

  23. Son KJ, Rahimian A, Shin D-S, Siltanen C, Patel T, Revzin A. Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells. Analyst. 2016;141:679–88.

    Article  CAS  PubMed  Google Scholar 

  24. Hill B, Accu-Chek Advantage. Electrochemistry for diabetes management. Curr Sep. 2005;21:45–8.

    CAS  Google Scholar 

  25. Lauks IR. Microfabricated biosensors and microanalytical systems for blood analysis. Acc Chem Res. 1998;31:317–24.

    Article  CAS  Google Scholar 

  26. Hedenmo M, Narváez A, Domínguez E, Katakis I. Improved mediated tyrosinase amperometric enzyme electrodes. J Electroanal Chem. 1997;425:1–11.

    Article  CAS  Google Scholar 

  27. Cummings EA, Mailley P, Linquette-Mailley S, Eggins BR, McAdams ET, McFadden S. Amperometric carbon paste biosensor based on plant tissue for the determination of total flavanol content in beers. Analyst. 1998;123:1975–80.

    Article  CAS  Google Scholar 

  28. Windmiller JR, Wang J. Wearable electrochemical sensors and biosensors: a review. Electroanalysis. 2013;25:29–46.

    Article  CAS  Google Scholar 

  29. Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 2014;32:363–71.

    Article  CAS  PubMed  Google Scholar 

  30. Kim J, Valdés-Ramírez G, Bandodkar AJ, Jia W, Martinez AG, Ramírez J, Mercier P, Wang J. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst. 2014;139:1632–6.

    Article  CAS  PubMed  Google Scholar 

  31. Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA. A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron. 2011;26:3290–6.

    Article  CAS  PubMed  Google Scholar 

  32. Liao Y-T, Yao H, Lingley A, Parviz B, Otis BP. A 3-CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J Solid-State Circuits. 2012;47:335–44.

    Article  Google Scholar 

  33. Yao H, Liao Y, Lingley A, Afanasiev A, Lähdesmäki I, Otis B, Parviz B. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. J Micromech Microeng. 2012;22:075007.

    Article  Google Scholar 

  34. Colombo P, Sonvico F, Colombo G, Bettini R. Novel platforms for oral drug delivery. Pharm Res. 2009;26:601–11.

    Article  CAS  PubMed  Google Scholar 

  35. Crommelin DJ, Storm G, Luijten P. ‘Personalised medicine’ through ‘personalised medicines’: time to integrate advanced, non-invasive imaging approaches and smart drug delivery systems. Int J Pharm. 2011;415:5–8.

    Article  CAS  PubMed  Google Scholar 

  36. Garcia-Gradilla V, Sattayasamitsathit S, Soto F, Kuralay F, Yardımcı C, Wiitala D, Galarnyk M, Wang J. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small. 2014;10:4154–9.

    CAS  PubMed  Google Scholar 

  37. Yang X, Liu X, Liu Z, Pu F, Ren J, Qu X. Near-infrared light-triggered, targeted drug delivery to cancer cells by Aptamer gated nanovehicles. Adv Mater. 2012;24:2890–5.

    Article  CAS  PubMed  Google Scholar 

  38. Santos GM, Zhao F, Zeng J, Shih W-C. Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. Nanoscale. 2014;6:5718–24.

    Article  CAS  PubMed  Google Scholar 

  39. Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA. Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev. 2004;56:185–98.

    Article  PubMed  Google Scholar 

  40. Staples M, Daniel K, Cima MJ, Langer R. Application of micro-and nano-electromechanical devices to drug delivery. Pharm Res. 2006;23:847–63.

    Article  CAS  PubMed  Google Scholar 

  41. Santini JT Jr, Cima MJ, Langer RS. Microchip drug delivery devices. Google Patents. 1998.

    Google Scholar 

  42. Sheybani R, Cobo A, Meng E. Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors. Biomed Microdevices. 2015;17:1–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from University of California-Davis, Research Investments in the Sciences & Engineering, and National Science Foundation (Awards CBET-1512745 and CBET&DMR-1454426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zimple Matharu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matharu, Z., Polat, O. (2017). Biosensing Devices for Personalized Healthcare. In: Kaushik, A., Jayant, R., Nair, M. (eds) Advances in Personalized Nanotherapeutics . Springer, Cham. https://doi.org/10.1007/978-3-319-63633-7_13

Download citation

Publish with us

Policies and ethics