Skip to main content

Ramanujan Summation

  • Chapter
  • First Online:
Ramanujan Summation of Divergent Series

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2185))

Abstract

In the first two sections of this chapter we recall the Euler-MacLaurin formula and use it to define what Ramanujan, in Chapter VI of his second Notebook, calls the “constant” of a series. But, as Hardy has observed, Ramanujan leaves some ambiguity in the definition of this “constant”. Thus in the third section we interpret this constant as the value of a precise solution of a difference equation. Then we can give in Sect. 1.4 a rigorous definition of the Ramanujan summation and its relation to the usual summation for convergent series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T.M. Apostol, T.H. Vu, Dirichlet series related to the Riemann zeta function. J. Number Theory 19, 85–102 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Ayoub, Euler and the Zeta function. Am. Math. Mon. 81, 1067–1086 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Bellman, A Brief Introduction to Theta Functions (Holt, New York, 1961)

    MATH  Google Scholar 

  • B.C. Berndt, Ramanujan’s Notebooks I, II, III, IV, V (Springer, New York, 1985/1989/1991/1994/1998)

    Google Scholar 

  • D. Birmingham, S. Sen, A Mellin transform summation technique. J. Phys. A Math. Gen. 20, 4557–4560 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Boole, A Treatise on the Calculus of Finite Differences, 2nd edn. (Dover, New York, 1960)

    MATH  Google Scholar 

  • J.M. Borwein, P.B. Borwein, K. Dilcher, Pi, Euler numbers and asymptotic expansions. Am. Math. Mon. 96, 681–687 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • J.M. Borwein, D.M. Bradley, R. Crandall, Computational strategies for Riemann zeta function. J. Comput. Appl. Math. 121, 247–296 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • N. Bourbaki, Algebre Chapitre VI Développements Tayloriens généralisés. Formule sommatoire d’Euler-MacLaurin Hermann (Hermann, Paris, 1959)

    Google Scholar 

  • K.N. Boyadzhiev, H.G. Gadiyar, R. Padma, Alternating Euler sums at the negative integers and a relation to a certain convolution of Bernoulli numbers. Bull. Korean. Math. Soc. 45(2), 277–283 (2008). arxiv.org/pdf/0811.4437

    Google Scholar 

  • P.L. Butzer, P.J.S.G Ferreira, G. Schmeisser, R.L. Stens, The summation formulae of Euler-MacLaurin, Abel-Plana, Poisson and their interconnections with the approximate sampling formula of signal analysis. Res. Maths 59, 359–400 (2011)

    Google Scholar 

  • B. Candelpergher, Développements de Taylor et sommation des series. Exp. Math. 13, 163–222 (1995)

    MathSciNet  MATH  Google Scholar 

  • B. Candelpergher, M.A. Coppo, E. Delabaere, La sommation de Ramanujan. L’Enseignement Mathematique 43, 93–132 (1997)

    MathSciNet  MATH  Google Scholar 

  • B. Candelpergher, H.G. Gadiyar, R. Padma, Ramanujan summation and the exponential generating function \(\sum _{k=0}^{\infty }\frac{z^{k}} {k} \zeta '(k)\). Ramanujan J. 21, 99–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Cartier, Mathemagics (A Tribute to L. Euler and R. Feynman). Lecture Notes in Physics, vol. 550 (Spinger, New York, 2000)

    Google Scholar 

  • M.A. Coppo, Sur les sommes d’Euler divergentes. Exp. Math. 18, 297–308 (2000)

    MathSciNet  MATH  Google Scholar 

  • M.A. Coppo, P.T. Young, On shifted Mascheroni series and hyperharmonic numbers. J. Number Theory 169, 1–440 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • H.M. Edwards, Riemann Zeta Function (Dover, New York, 1974)

    MATH  Google Scholar 

  • H.M. Edwards, Riemann Zeta Function (Dover, New York, 2001)

    Google Scholar 

  • P. Flajolet, B. Salvy, Euler sums and contour integral representations. Exp. Math. 7(1), 15–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • E. Freitag, R. Busam, Complex Analysis (Springer, New York, 2009)

    MATH  Google Scholar 

  • O. Furdui, Limits, Series, and Fractional Part Integrals (Springer, New York, 2012)

    MATH  Google Scholar 

  • E. Grosswald, Comments on some formulae of Ramanujan. Acta Arith. XXI, 25–34 (1972)

    Google Scholar 

  • G.H. Hardy, Divergent Series (Clarendon, Oxford, 1949)

    MATH  Google Scholar 

  • D.H. Lehmer, Euler constants for arithmetical progressions. Acta Arih. XXVII, 125–142 (1975)

    Google Scholar 

  • B. Malgrange, Sommation des séries divergentes. Expo. Math. 13, 163–222 (1995)

    MATH  Google Scholar 

  • N.E. Nörlund, Sur les séries d’interpolation (Gauthier-Villars, Paris, 1926)

    MATH  Google Scholar 

  • S. Ramanujan, Collected Papers, ed. by G.H. Hardy, P.V. Seshu Aiyar, B.M. Wilson (Cambridge University Press, Cambridge, 1927)

    Google Scholar 

  • J.-P. Ramis, Séries divergentes et théories asymptotiques. Bull. Soc. Math. France 121(Panoramas et Synthses), 74 (1993)

    Google Scholar 

  • B. Randé, Les Carnets Indiens de Srinivasa Ramanujan (Cassini, Paris, 2002)

    MATH  Google Scholar 

  • R.J. Singh, D.P. Verma, Some series involving Riemann zeta function. Yokohama Math. J. 31, 1–4 (1983)

    MathSciNet  MATH  Google Scholar 

  • R. Sitaramachandrarao, A formula of S. Ramanujan. J. Number Theory 25, 1–19 (1987)

    Article  MATH  Google Scholar 

  • J. Sondow, Double integrals for Euler’s constant and \(ln(\frac{4} {\pi } ))\) and an analogue of Hadjicostas’s formula. Am. Math. Mon. 112(1), 61–65 (2005)

    Article  MATH  Google Scholar 

  • H.M. Srivastava, J. Choi, Zeta and q-Zeta Functions an Associated Series and Integrals (Elsevier, Amsterdam, 2012)

    MATH  Google Scholar 

  • T. Tao, The Euler-MacLaurin formula, Bernoulli numbers, the zeta function, and real variable analytic continuation. terrytao.wordpress.com/2010/04/10/the-euler-maclaurin-formula-bernoulli-number (2010)

  • E.C. Titchmarsh, D.R. Heath-Brown, The Theory of the Riemann Zeta-Function (Clarendon, Oxford, 2007)

    Google Scholar 

  • V.S. Varadarajan, Euler and his work on infinite series. Bull. Am. Math. Soc. 44(4), 515 (2007)

    Google Scholar 

  • I. Vardi, Computational Recreations in Mathematica (Addison-Wesley, Redwood City, CA, 1991)

    MATH  Google Scholar 

  • O.V. Viskov, A non commutative approach to classical problems of analysis. Proc. Steklov Inst. Math. 4, 21–32 (1988)

    MathSciNet  MATH  Google Scholar 

  • K. Yoshino, Difference equation in the space of holomorphic functions of exponential type and Ramanujan summation. ams.org.epr.uca/ma/mathscinet/search

  • D. Zagier, Valeurs des fonctions zéta des corps quadratiques réels aux entiers négatifs. Société Mathématique de France. Astérisque 41/42, 133–151 (1977)

    Google Scholar 

  • D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics Volume II. Progress in Mathematics, vol. 120 (Birkhauser, Basel, 1994)

    Google Scholar 

  • N.Y. Zhang, K. Williams, Some results on the generalized Stieltjes constants. Analysis 14, 147–162 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Candelpergher, B. (2017). Ramanujan Summation. In: Ramanujan Summation of Divergent Series. Lecture Notes in Mathematics, vol 2185. Springer, Cham. https://doi.org/10.1007/978-3-319-63630-6_1

Download citation

Publish with us

Policies and ethics