Skip to main content

Application of Different Pre-treatment Techniques for Enhanced Biogas Production from Lawn Grass: A Review

  • Chapter
  • First Online:
Book cover The Nexus: Energy, Environment and Climate Change

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Biogas is considered as the best possible alternative source of energy. Biogas is clean, cheap, sustainable, and environmentally friendly. The biogas production potential from energy crops, grass, in particular, has been investigated widely. Although grass produces quality methane in comparison to other feedstock, low biogas yield has been a common challenge. This is because the grass is part of lignocellulosic biomass, consisting of cellulose and hemicelluloses, which are linked together by strong chemical bonds. These characteristics make it resistant to anaerobic digestion. Pre-treatment including chemical, mechanical, thermal, biological and/or a combination of them may be used to break the ether bonds, resulting in an easy accessibility of sugars present in a substrate for the enzyme. For these reasons, this chapter evaluates the various pre-treatment techniques to optimize the biodegradability of grass. All the pre-treatment techniques have been reported to increase biogas production rate. Among the pre-treatments options, chemical pre-treatment has been considered as the most preferred though its operational cost is still under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer, A., Lizasoain, J., Theuretzbacher, F., Agger, J. W., Rincón, M., Menardo, S., et al. (2014). Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresource Technology, 166, 403–410.

    Article  Google Scholar 

  • Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106.

    Article  Google Scholar 

  • Berglund Odhner, P., Sárvári Horváth, I., Kabir, M. M., & Shabbauer, A. (2012). Biogas from lignocellulosic biomass.

    Google Scholar 

  • Bochmann, G., & Montgomery, L. F. R. (2013). Storage and pre-treatment of substrates for biogas production (pp. 85–89). Sawston: The Biogas Handbook, Woodhead Publishing.

    Google Scholar 

  • Borgström, Y. (2011). Pretreatment technologies to increase the methane yields by anaerobic digestion in relation to cost efficiency of substrate transportation.

    Google Scholar 

  • Elias, J. (2010). Study on renewable biogas energy production from cladodes of Opuntia ficus-indica (Doctoral dissertation, aau).

    Google Scholar 

  • Ferreira, L. C., Nilsen, P. J., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2014). Biomethane potential of wheat straw: Influence of particle size, water impregnation and thermal hydrolysis. Chemical Engineering Journal, 242, 254–259.

    Article  Google Scholar 

  • Himmelsbach, J. N., Raman, D. R., Anex, R. P., Burns, R. T., & Faulhaber, C. R. (2010). Effect of ammonia soaking pretreatment and enzyme addition on biochemical methane potential of switchgrass. Transactions of the ASABE, 53(6), 1921.

    Article  Google Scholar 

  • Kamarad, L., Pohn, S., Harasek, M., Kirchmayr, R., Bochmann, G., & Braun, R. (2010). Hydrodynamic characteristics of the biogas plant digester using tracer tests and CFD methods. In Proceedings of the International Water Association, 12th World Congress on Anaerobic Digestion, Guadalajara, Mexico.

    Google Scholar 

  • Khor, W. C., Rabaey, K., & Vervaeren, H. (2015). Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass. Bioresource Technology, 176, 181–188.

    Article  Google Scholar 

  • Kratky, L., & Jirout, T. (2011). Biomass size reduction machines for enhancing biogas production. Chemical Engineering and Technology, 34(3), 391–399.

    Article  Google Scholar 

  • Lagerkvist, A., & Morgan-Sagastume, F. (2012). The effects of substrate pre-treatment on anaerobic digestion systems: A review. Waste Management, 32(9), 1634–1650.

    Article  Google Scholar 

  • Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H. V., Auer, M., et al. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 101(13), 4900–4906.

    Article  Google Scholar 

  • Lindner, J., Zielonka, S., Oechsner, H., & Lemmer, A. (2015). Effects of mechanical treatment of digestate after anaerobic digestion on the degree of degradation. Bioresource Technology, 178, 194–200.

    Article  Google Scholar 

  • Liu, C., & Wyman, C. E. (2003). The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover. Industrial and Engineering Chemistry Research, 42(21), 5409–5416.

    Article  Google Scholar 

  • Mussatto, S. I., & Teixeira, J. A. (2010). Lignocellulose as raw material in fermentation processes.

    Google Scholar 

  • My el Rendimiento Animal, M. (2002). Effects of biological additives on silage composition of mott dwarf elephantgrass and animal performance.

    Google Scholar 

  • Nizami, A. S., Korres, N. E., & Murphy, J. D. (2009). Review of the integrated process for the production of grass biomethane. Environmental Science and Technology, 43(22), 8496–8508.

    Article  Google Scholar 

  • Panneerselvam, A., Sharma-Shivappa, R. R., Kolar, P., Clare, D. A., & Ranney, T. (2013a). Hydrolysis of ozone pretreated energy grasses for optimal fermentable sugar production. Bioresource Technology, 148, 97–104.

    Article  Google Scholar 

  • Panneerselvam, A., Sharma-Shivappa, R. R., Kolar, P., Ranney, T., & Peretti, S. (2013b). Potential of ozonolysis as a pretreatment for energy grasses. Bioresource Technology, 148, 242–248.

    Article  Google Scholar 

  • Romano, R. T., Zhang, R., Teter, S., & McGarvey, J. A. (2009). The effect of enzyme addition on anaerobic digestion of JoseTall Wheat Grass. Bioresource Technology, 100(20), 4564–4571.

    Article  Google Scholar 

  • Sambusiti, C., Ficara, E., Malpei, F., Steyer, J. P., & Carrere, H. (2012). Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage. Chemical Engineering Journal, 211, 488–492.

    Article  Google Scholar 

  • Sambusiti, C., Ficara, E., Malpei, F., Steyer, J. P., & Carrère, H. (2013). Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy, 55, 449–456.

    Article  Google Scholar 

  • Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194.

    Article  Google Scholar 

  • Shafiei, M., Kabir, M. M., Zilouei, H., Horváth, I. S., & Karimi, K. (2013). Techno-economical study of biogas production improved by steam explosion pretreatment. Bioresource Technology, 148, 53–60.

    Article  Google Scholar 

  • Singh, A. K., & Parida, S. K. (2015). A novel hybrid approach to allocate renewable energy sources in distribution system. Sustainable Energy Technologies and Assessments, 10, 1–11.

    Article  Google Scholar 

  • Sonakya, V., Raizada, N., & Kalia, V. C. (2001). Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnology Letters, 23(18), 1463–1466.

    Article  Google Scholar 

  • Sreekrishnan, T. R., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques—A review. Bioresource Technology, 95(1), 1–10.

    Article  Google Scholar 

  • Sui, W., & Chen, H. (2014). Multi-stage energy analysis of steam explosion process. Chemical Engineering Science, 116, 254–262.

    Article  Google Scholar 

  • Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.

    Article  Google Scholar 

  • Tedesco, S., Mac Lochlainn, D., & Olabi, A. G. (2014). Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production. Energy, 76, 857–862.

    Article  Google Scholar 

  • Tsapekos, P., Kougias, P. G., & Angelidaki, I. (2015). Biogas production from ensiled meadow grass; effect of mechanical pretreatments and rapid determination of substrate biodegradability via physicochemical methods. Bioresource Technology, 182, 329–335.

    Article  Google Scholar 

  • Varma, R. (2008). Characterization of anaerobic bioreactors for bioenergy generation using a novel tomography technique. Ann Arbor: ProQuest.

    Google Scholar 

  • Wan, C., Zhou, Y., & Li, Y. (2011). Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource Technology, 102(10), 6254–6259.

    Article  Google Scholar 

  • Winkler, H., Hughes, A., Marquard, A., Haw, M., & Merven, B. (2011). South Africa’s greenhouse gas emissions under business-as-usual: The technical basis of ‘growth without constraints’ in the long-term mitigation scenarios. Energy Policy, 39(10), 5818–5828.

    Article  Google Scholar 

  • Xie, S., Frost, J. P., Lawlor, P. G., Wu, G., & Zhan, X. (2011). Effects of thermo-chemical pre-treatment of grass silage on methane production by anaerobic digestion. Bioresource Technology, 102(19), 8748–8755.

    Article  Google Scholar 

  • Yang, L., Xu, F., Ge, X., & Yebo Li, Y. (2015). Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 44, 82–834.

    Google Scholar 

  • Yeh, A. I., Huang, Y. C., & Chen, S. H. (2010). Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 79(1), 192–199.

    Article  Google Scholar 

  • Yu, Q., Zhuang, X., Lv, S., He, M., Zhang, Y., Yuan, Z., et al. (2013). Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresource Technology, 129, 592–598.

    Article  Google Scholar 

  • Zhao, X. Q., Zi, L. H., Bai, F. W., Lin, H. L., Hao, X. M., Yue, G. J., & Ho, N. W. (2012). Bioethanol from lignocellulosic biomass. In Biotechnology in China III: Biofuels and bioenergy (pp. 25–51). Berlin: Springer.

    Google Scholar 

  • Zheng, J., & Rehmann, L. (2014). Extrusion pretreatment of lignocellulosic biomass: A review. International Journal of Molecular Sciences, 15(10), 18967–18984.

    Article  Google Scholar 

  • Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35–53.

    Article  Google Scholar 

  • Zimbardi, F., Viola, E., Nanna, F., Larocca, E., Cardinale, M., & Barisano, D. (2007). Acid impregnation and steam explosion of corn stover in batch processes. Industrial Crops and Products, 26(2), 195–206.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from South African Energy National Development Institute (SANEDI). The University of Johannesburg Global Excellence Strategy is acknowledged for providing Noxolo Sibiya with a bursary. The Botswana International University of Science and Technology is also acknowledged for financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Sibiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sibiya, N.T., Tesfagiogis, H., Muzenda, E. (2018). Application of Different Pre-treatment Techniques for Enhanced Biogas Production from Lawn Grass: A Review. In: Leal Filho, W., Surroop, D. (eds) The Nexus: Energy, Environment and Climate Change. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-63612-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63612-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63611-5

  • Online ISBN: 978-3-319-63612-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics