Genetically Modified Crops

  • W. Jeffrey Hurst
  • John W. Finley
Part of the Food Science Text Series book series (FSTS)


When man evolved from a hunter gatherer they began to grow crops for food. They found that selection of crops improved the quality and yield of foods for food production. The selection of seeds led to the evolution of new crops that are more productive and nutritious crops.


  1. Ahmed, F. E. (2002). Detection of genetically modified organisms in food. TRENDS in Biotechnology, 20(5), 215–223.CrossRefGoogle Scholar
  2. Ahloowali, B. S. (2004). Global impact of mutation-derived varieties (PDF). Euphytica, 135, 187–204.CrossRefGoogle Scholar
  3. Cohen, S. N., Chang, A. C. Y., Boyer, H., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of the United States of America, 70, 3240–3244.CrossRefGoogle Scholar
  4. European Union. (2011). Overview on the detection, interpretation and reporting on the presence of unauthorised genetically modified materials ENGL ad hoc working group on “unauthorised GMOs”. Guidance document from the European Network of GMO Laboratories (ENGL) European Commission Joint Research Centre’ Institute for Health and Consumer Protection Luxembourg: Publications Office of the European Union.Google Scholar
  5. FAO/IAEA. (2014). Plant Breeding and Genetics Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Retrieved 31 July 2014.Google Scholar
  6. FAO (Food and Agriculture Organization). (2015). FAO Statistical Pocketbook 2015: World Food and Agriculture. Rome: FAO.Google Scholar
  7. Ford, E. B. (1960). Mendelism and evolution (7th ed.p. 1). London: Methuen & Co.Google Scholar
  8. Francis, K. E., & Spiker, S. (2004). Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. The Plant Journal, 41(3), 464–477.CrossRefGoogle Scholar
  9. Graften, A., & Ridley, M. (2006). Richard Dawkins: How a scientist changed the way we think (p. 69). New York, NY: Oxford University Press.Google Scholar
  10. Hedden, P. (2003). The genes of the Green Revolution. Trends in Genetics, 19(1), 5–9.CrossRefGoogle Scholar
  11. Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thurengiensis. Microbiological Reviews, 53, 242–255.Google Scholar
  12. James, C. (2006). Global status of commercialized biotech/GM crops: 2006. Ithaca, NY: International Service for the Acquisition of Agri-Biotech Applications.Google Scholar
  13. James, C. (2015). Global status of commercialized biotech/GM crops: 2015. Ithaca, NY: International Service for the Acquisition of Agri-biotech Applications.Google Scholar
  14. Joos, H., Timmerman, B., Montagu, M. V., & Schell, J. (1983). Genetic analysis of transfer and stabilization of Agrobacterium DNA in plant cells. The EMBO Journal, 2(12), 2151–2160.Google Scholar
  15. Maluszynsk, M. K., Nichterlein, K., van Zanten, L., & Ahloowalia, B. S. (2000). Officially released mutant varieties – the FAO/IAEA Database. Mutation Breeding Review, 12, 1–84.Google Scholar
  16. Mba, C. (2013). Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy, 3, 200–231.CrossRefGoogle Scholar
  17. NAS (National Academy of Sciences). (2016). Genetically engineered crops: Experiences and prospects. NAS Press. Retrieved from
  18. Ossowski, S. K., Schneeberger, J. I., Lucas-Lledo, N., Warthmann, R. M., Clark, R. G., Shaw, D., Weigel, D., & Lynch, M. (2010). The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science, 327, 92–94.CrossRefGoogle Scholar
  19. Popping, B. (2010). Genetically modified organisms. In B. Popping, C. Diaz-Amigo, & Hoenicke (Eds.), Molecular biological and immunological -techniques and applications for food chemists (pp. 157–174). New York: Wiley.CrossRefGoogle Scholar
  20. Price, B., & Cotter, J. (2014). The GM contamination register: A review of recorded contamination incidents associated with GMOs 1197–2013. International Journal of Food Contamination, 1, 5.CrossRefGoogle Scholar
  21. Retiz, L. P. (1970). New wheats and social progress. Science, 169, 952–955. Scholar
  22. Roychowdhury, R., & Tah, J. (2013). Mutagenesis—A potential approach for crop improvement. In K. R. Hakeem, P. Ahmad, & M. Ozturk (Eds.), Crop improvement: New approaches and modern techniques (pp. 149–187). New York: Springer Science+Business Media, LLC.CrossRefGoogle Scholar
  23. Schell, J., & Van Montagu, M. (1977). The Ti-plasmid of agrobacterium tumefaciens, a natural vector for the introduction of NIF genes in plants? In A. Hollaender, R. H. Burris, P. R. Day, R. W. F. Hardy, D. R. Helinski, M. R. Lamborg, L. Owens, & R. C. Valentine (Eds.), Genetic engineering for nitrogen fixation, Basic Life Sciences (Vol. 9, pp. 159–179). Boston, MA: Springer. Scholar
  24. Schouten, H. J., & Jacobsen, E. (2007). Are mutations in genetically modified plants dangerous? Journal of Biomedicine and Biotechnology, 2007, 1.CrossRefGoogle Scholar
  25. Slater, A., Scott, N., & Fowler, M. (2008). Plant Biotechnology: The genetic manipulation of plants (2nd ed.). Oxford, NY: Oxford University Press.Google Scholar
  26. Vollenhofer, S., Burg, K., Schmidt, J., & Kroath, K. (1999). Genetically modified organisms in food screening and specific detection by polymerase chain reaction. Journal of Agricultural and Food Chemistry, 47, 5038.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.The Hershey Company Technical CenterHersheyUSA
  2. 2.Louisiana State UniversityLakewood RanchUSA

Personalised recommendations