Skip to main content

Beer and Wine

  • Chapter
  • First Online:
Principles of Food Chemistry

Part of the book series: Food Science Text Series ((FSTS))

Abstract

Alcoholic beverages are produced by fermentation of sugars to ethanol. Starting materials range from simple sugars to complex carbohydrates that are reduced to simple sugars by hydrolytic cleavage of starches and dextrins. Beer and wind represent direct products from fermentation whereas vodka, rum, whiskey and other distilled spirits and a distillation step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acree, T. E., Lavin, E. H., Nishida, R., & Watanabe, S. (1990). ο-Amino-acetophenone, a foxy smelling component of Labruscia. In Y. Bessiere & A. F. Thomas (Eds.), Flavour science and technology (pp. 49–52). Chichester: Wiley.

    Google Scholar 

  • Alba-Lois, L., & Segal-Kischinevzky, C. (2010). Yeast fermentation and the making of beer and wine beer & wine makers. Nature Education, 3(9), 17.

    Google Scholar 

  • Allen, M. S., Lacey, M. J., Brown, W. V., & Harris, R. L. N. (1990). Occurrence of methoxypyrazines in grapes of Vitis vinifera cv. Cabernet Sauvignon and Sauvignon blanc. In P. Ribéreau-Gayon, & A. Lonvaud (Eds.), Actualités Oenologiques 89: Comptes rendus du 4e Symposium International d’Oenologie, Bordeaux, 1989 (pp. 25–30).

    Google Scholar 

  • Allen, M. S., Lacey, M. J., Harris, R. L. N., & Brown, W. V. (1991). Contribution of methoxypyrazines to sauvignon blanc wine aroma. American Journal of Enology and Viticulture, 42, 109–112.

    CAS  Google Scholar 

  • Allen, M. S., Lacey, M. J., & Boyd, S. (1994). Determination of methoxypyrazines in red wines by stable isotope dilution gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 42, 1734–1738.

    Google Scholar 

  • Ardö, Y. (2006). Flavour formation by amino acid catabolism. Biotechnology Advances, 24, 238–224.

    Article  Google Scholar 

  • Baek, H. H., Cadwallader, K. R., Marroquin, E., & Silva, J. L. (1997). Identification of predominant aroma compounds in muscadine grape juice. Journal of Food Science, 62, 249.

    Article  CAS  Google Scholar 

  • Bailly, S., Jerkovic, V., Marchand-Brynaert, J., & Collin, S. (2006). Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols. Journal of Agricultural and Food Chemistry, 54, 7227–7234.C.

    Article  CAS  Google Scholar 

  • Bardi, L., Cocito, C., & Marzona, M. (1999). Saccharomyces cerevisiae cell fatty acid composition and release during fermentation without aeration and in absence of exogenous lipids. International Journal of Food Microbiology, 47, 133–140.

    Article  CAS  Google Scholar 

  • Barnett, J. A. (2000). A history of research on yeast 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast, 16, 755–771.

    Article  CAS  Google Scholar 

  • Bartowsky, E. J., & Pretorius, I. S. (2009). Microbial formation and modification of flavor and off-flavor compounds in wine. In H. König et al. (Eds.), Biology of microorganisms on grapes, in must and in wine (pp. 209–231). Berlin: Springer.

    Chapter  Google Scholar 

  • Bauer, K., Garbe, D., & Surburg, H. (1997). Aromatic compounds. In H. Surburg & J. Panten (Eds.), Common fragrance and flavor materials. Weinheim: Wiley–VCH.

    Chapter  Google Scholar 

  • Bauer, F. F., & Pretorius, I. S. (2000). Yeast stress response and fermentation efficiency: how to survive the making of wine. South African Journal of Enology and Viticulture, 21, 27–51.

    CAS  Google Scholar 

  • Baumes, R. (2009). Wine aroma precursors. In M. V. Moreno-Arribas & M. Carmen Polo (Eds.), Wine chemistry and biochemistry (pp. 251–274). New York: Springer.

    Google Scholar 

  • Benitez, J. L., Forster, A., De Keukeleire, D., Moir, M., Sharpe, F. R., Verhagen, L. C., & Westwood, K. T. (1997). Hops and hop products. Nuremberg: Verlag Hans Carl.

    Google Scholar 

  • Boulton, R. (1980). The general relationship between potassium, sodium and pH in grape juice and wine. American Journal of Enology and Viticulture, 31, 182–186.

    CAS  Google Scholar 

  • Buttery, R. G., & Ling, L. C. (1966). The chemical composition of the volatile oil of hops. Brewing Dig, 41, 71–77.

    CAS  Google Scholar 

  • Campo, E., Ferreira, V., Escudero, A., & Cacho, J. (2005). Prediction of the wine sensory properties related to grape variety from dynamicheadspace gas chromatography-olfactometry data. Journal of Agricultural and Food Chemistry, 53, 5682–5690.

    Article  CAS  Google Scholar 

  • Capone, D. L., & Jeffery, D. W. (2011). Effects of transporting and processing Sauvignon blanc grapes on 3-mercaptohexan-1-ol precursor concentrations. Journal of Agricultural and Food Chemistry, 59, 4659–4667.

    Article  CAS  Google Scholar 

  • Capone, S. L., Paardon, A. G., Cordente, A. G., & Jeffery, D. W. (2011). Identification and quantitation of 3-S-cysteinylglycinehexan-1-ol (cysgly-3-MH) om Sauvignon blanc grape juice by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 59, 11204–11210.

    Article  CAS  Google Scholar 

  • Carrau, F., Medina, K., Farina, L., Boido, E., Henschke, P., & Dellacassa, E. (2008). Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Research, 8, 1196–1207.

    Article  CAS  Google Scholar 

  • Chatonnet, P., Dubourdieu, D., Boidron, J. N., & Pons, M. (1992). The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture, 60, 165–178.

    Google Scholar 

  • Conway, M. E., & Hutson, S. M. (2000). Mammalian branched-chain aminotransferases. Methods in Enzymology, 324, 355–365.

    Article  CAS  Google Scholar 

  • Conway, M. E., & Hutson, S. M. (2000). Mammalian branched-chain aminotransferases. Methods in Enzymology, 324, 355–365.

    Google Scholar 

  • Davoodi, J., Drown, P. M., Bledsoe, R. K., Wallin, R., Reinhart, G. D., & Hutson, S. M. (1998). Overexpression and characterization of the human mitochondrial and cytosolic branched-chain aminotransferases. The Journal of Biological Chemistry, 273, 4982–49890.

    Article  CAS  Google Scholar 

  • De La Presa-Owens, C., & Noble, A. C. (1997). Effect of storage at elevated temperatures on aroma of Chardonnay wines. American Journal of Enology and Viticulture, 48, 310–316.

    Google Scholar 

  • De Keukeleire, D. (2000). Fundamentals of beer and hop chemistry. Quimica Nova, 23(1), 108–112.

    Article  Google Scholar 

  • Dubourdieu, D., & Tominaga, T. (2009). Polyfunctional thiol compounds. In M. V. Moreno-Arribas & M. C. Polo (Eds.), Wine chemistry and biochemistry (pp. 275–293). New York: Springer.

    Chapter  Google Scholar 

  • Ebler, S. E., & Thorngate, J. H. (2009). Wine chemistry and flavor: Looking into the crystal glass. Journal of Agricultural and Food Chemistry, 57, 8098–8108.

    Article  Google Scholar 

  • Ferreira, V., Ortín, N., Escudero, A., López, R., & Cacho, J. (2002). Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. Journal of Agricultural and Food Chemistry, 50(4048), 54.

    Google Scholar 

  • Ferreira, V. (2010). Volatile aroma compounds and wine sensory attributes. In A. G. Reynolds (Ed.), Managing wine quality (Vol. 1, pp. 3–23). Boston: CRC Press.

    Google Scholar 

  • Ferreora, V. (2010). Volatile aroma compounds and wine sensory attributes. In Managing wine quality viticulture and wine quality (pp. 3–28). Cambridge: Woodhead Publishing Series in Food Science, Technology and Nutrition.

    Chapter  Google Scholar 

  • Forster, A., Beck, B., & Schmidt, R. (1995). Untersuchungen zu Hopfenpolyphenolen. In European brewery convention, Proceedings of the 25th Congress, Brussels (pp. 143–150). Oxford: Oxford University Press.

    Google Scholar 

  • Francis, I.L., Kassara, S., Noble, A.C., & Williams, P. J. (1998). The contribution of glycoside precursors to Cabernet Sauvignon and Merlot aroma: Sensory and compositional studies. In A. L. Waterhouse, & S. E. Ebeler (Eds.), Chemistry of wine flavor (pp. 13–30).

    Google Scholar 

  • Francis, I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11, 114–126.

    Article  CAS  Google Scholar 

  • Ghidossi, R., Poupot, C., Thibon, C., Pons, A., Darriet, P., Riquier, L., De Revel, G., & Mietton Peuchot, M. (2012). The influence of packaging on wine conservation. Food Control, 23, 302–311.

    Article  CAS  Google Scholar 

  • Godoy, A., Herrera, T., & Ulloa, M. (2003). Más allá del pulque y el tepache: Las bebidas alcohólicas no destiladas indígenas de México. Mexico: UNAM, Instituto de Investigaciones Antropológicas.

    Google Scholar 

  • González-Barreiro, C., Rial-Otero, R., Cancho-Grande, B., & Simal-Gándara, J. (2013). Wine aroma compounds in grapes: A critical review. Critical Reviews in Food Science and Nutrition, 55, 202–218. https://doi.org/10.1080/10408398.2011.650336.

    Article  Google Scholar 

  • Günata, Y. Z., Bayonove, C. L., Baumes, R. L., & Cordonnier, R. E. (1985). The aroma of grapes. I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. Journal of Chromatography A, 331, 83–90.

    Article  Google Scholar 

  • Guth, H. (1995). Potente Aromastoffe von Weißweinen unterschiedlicher Rebsorten—Identifizierung und Vergleich. Lebensmittelchemie, 49, 107.

    Google Scholar 

  • Guth, H. (1996). Identification of character impact odorants of different white wine. Helvetica Chimica Acta, 79, 1559–1571.

    Article  CAS  Google Scholar 

  • Guth, H. (1997a). Identification of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 45, 3022.

    Article  CAS  Google Scholar 

  • Guth, H. (1997b). Quantitation and sensory studies of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 45, 3027.

    Article  CAS  Google Scholar 

  • Guth, H. (1998). Comparison of different white wine varieties in odor profiles by instrumental analysis and sensory studies. In A. L. Waterhouse & S. E. Ebeler (Eds.), Chemistry of wine flavor (p. 39). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Hanke, S., Ditz, V., Herrmann, M., Back, W., Becker, T., & Krottenthaler, M. (2010). Influence of ethyl acetate, isoamyl acetate and linalool on off-flavour perception in beer. Brewing Science, 63, 94–99.

    Google Scholar 

  • Hernandez-Orte, P., Ibarz, M., Cacho, J., & Ferreira, V. (2005). Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chemistry, 89, 163–174.

    Article  CAS  Google Scholar 

  • Herraiz, T., & Ough, C. S. (1993). Chemical and technological factors determining tetrahydro-beta-carboline-3-carboxylic acid content in fermented alcoholic beverages. Journal of Agricultural and Food Chemistry, 41(6), 959–964.

    Google Scholar 

  • Hornsey, I. S. (2003). A history of beer and brewing (p. 10). Cambridge: RSC.

    Google Scholar 

  • Jackson, R. S. (2008). Wine science: Principals and applications (p. 281). Burlington, MA: Academic Press.

    Google Scholar 

  • Karbowiak, T., Gougeon, R. D., Alinc, J. B., Brachais, L., Debeaufort, F., Voilley, A., & Chassagne, D. (2009). Wine oxidation and the role of cork. Critical Reviews in Food Science and Nutrition, 50, 20–52.

    Article  Google Scholar 

  • Kowaka, K., Fukuoka, Y., Kawasaki, H., & Asano, K. (1983). The true value of aroma hops in brewing, Proceedings of the European Brewery Convention Congress, London (pp. 71–78). Oxford: IRL Press.

    Google Scholar 

  • Lacey, M. J., Allen, M. S., Harris, R. L. N., & Brown, W. V. (1991). Methoxypyrazines in Sauvignon blanc grapes and wines. American Journal of Enology and Viticulture, 42, 103–108.

    Google Scholar 

  • Lee, S. J., & Noble, A. C. (2003). Characterization of odor-active compounds in Californian Chardonnay wines using GC-olfactometry and GC-mass spectrometry. Journal of Agricultural and Food Chemistry, 51, 8036–8044.

    Article  CAS  Google Scholar 

  • Lee, S. J., & Noble, A. C. (2006). Use of partial least squares regression and multidimensional scaling on aroma models of California Chardonnay wines. American Journal of Enology and Viticulture, 57, 363–370.

    CAS  Google Scholar 

  • Lermusieau, G., & Collin, S. (2003). Volatile sulfur compounds in hops and residual concentrations in beer—a review. Journal of the American Society of Brewing Chemists, 61, 119–113.

    Google Scholar 

  • Liang, Z., Sang, M., Fan, P., Wu, B., Wang, L., Duan, W., & Li, S. (2011). Changes of polyphenols, sugars, and organic acid in 5 vitis genotypes during berry ripening. Journal of Food Science, 76(9), C1231–C1238.

    Article  CAS  Google Scholar 

  • Liu, S.-Q. (2002). Malolactic fermentation in wine—beyond deacidification. Journal of Applied Microbiology, 92, 589–601.

    Article  CAS  Google Scholar 

  • Mateo, J. J., & JimeÅ„ez, M. (2000). Monoterpenes in grape juice and wines. Journal of Chromatography A, 881, 557–567.

    Article  CAS  Google Scholar 

  • Marriott, R., (2001). Hop aroma products and their application in brewing. In Proceedings of the European brewery symposium on flavour and flavour stability, Nancy, France, Monograph 31. Fachverlag Hans Carl: Nürnberg, Germany, pp. 137–142.

    Google Scholar 

  • McGovern, P. E., Hartung, U., Badler, V. R., Glusker, D. L., & Exner, L. J. (1997). The beginnings of winemaking and viniculture in the ancient near east and Egypt. Expedition, 39, 3–21.

    Google Scholar 

  • McGovern, P. E., Zhang, J., Tang, J., Zhang, Z., Hall, G. R., Moreau, R. A., Nunez, A., Butrym, E. D., Richards, M. P., Wang, C.-S., Cheng, G., Zhao, Z., & Wang, C. (2004). Fermented beverages of preand proto-historic China. Proceedings of the National Academy of Sciences of the United States of America, 101, 17593–17598.

    Article  CAS  Google Scholar 

  • Mendes-Pinto, M. M., Silva Ferreira, A. C., Caris-Veyrat, C., & Guedes de Pinho, P. (2005). Carotenoid, chlorophyll, and chlorophyll derived compounds in grapes and port wines. Journal of Agricultural and Food Chemistry, 53, 10034–10041.

    Article  CAS  Google Scholar 

  • Mendes-Pinto, M. M. (2009). Carotenoid breakdown products the–norisoprenoids–in wine aroma. Archives of Biochemistry and Biophysics, 483, 236–245..

    Google Scholar 

  • Mestres, M., Busto, O., & Guasch, J. (2000). Analysis of organic sulfur compounds in wine aroma. Journal of Chromatography A, 881, 569–581.

    Article  CAS  Google Scholar 

  • Michel, R. H., McGovern, P. E., & Badler, V. R. (1993). The first wine and beer: chemical detection of ancient fermented beverages. Analytical Chemistry, 65, 408A–413A.

    CAS  Google Scholar 

  • Moio, L., & Etievant, P. X. (1995). Ethyl anthranilate, ethyl cinnamate, 2,3-dihydrocinnamate, and methyl anthranilate: Four important odorants identified in Pinot noir wines of Burgundy. American Journal of Enology and Viticulture, 46, 392–398.

    CAS  Google Scholar 

  • Nielsen, T. (2009). Character impact hop aroma compounds in ale. In Hop flavor and aroma proceedings of the 1st international brewers symposium 2006, Corvallis, USA (pp. 59–78).

    Google Scholar 

  • Nisbet, M. A., Tobias, H. J., Brenna, J. T., Sacks, G. L., & Mansfield, A. K. (2014). Quantifying the contribution of grape hexoses to wine volatiles by high-precision [U13C]-glucose tracer studies. Journal of Agricultural and Food Chemistry, 62, 6820–6827.

    Article  CAS  Google Scholar 

  • Ohloff, G. (1978). The importance of minor components in flavors and fragrances. Perfumer and Flavorist, 3, 11–22.

    CAS  Google Scholar 

  • Pasteur, L. (1876). Studies on fermentation. London: Macmillan.

    Google Scholar 

  • Polášková, P., Herszage, J., & Ebeler, S. E. (2008). Wine flavor: Chemistry in a glass. Chemical Society Reviews, 37, 2478–2489.

    Article  Google Scholar 

  • Pollach, G., Hein, W., & Hollaus, F. (1996). Einsatz von Hopfenprodukten als Bakteriostaticum in der Zuckerindustrie. Zuckerindustrie, 121, 919–926.

    CAS  Google Scholar 

  • Rapp, A. (1998). Volatile flavour of wine: Correlation between instrumental analysis and sensory perception. Nahrung, 42, 351–363.

    Article  CAS  Google Scholar 

  • Razungles, A., Günata, Z., Pinatel, S., Baumes, R., & Bayonove, C. (1993). Quantitative studies on terpenes, norisoprenoids and their precursors in several varieties of grapes. Sciences des Aliments, 13, 59–72.

    CAS  Google Scholar 

  • Razungles, A., Bayonove, C. L., Cordonnier, R. E., & Sapis, J. C. (1988). Grape carotenoids: Changes during the maturation period and localization in mature berries. American Journal of Enology and Viticulture, 39, 44–48.

    CAS  Google Scholar 

  • Ribéreau-Gayon, P., Boidron, J. N., & Terrier, A. (1975). Aroma of Muscat grape varieties. Journal of Agricultural and Food Chemistry, 23, 1042–1047.

    Google Scholar 

  • Robinson, A. L., Boss, P. K., Solomon, P. S., Trengrove, R. D., Heymann, H., & Ebler, S. E. (2014). Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. The American Journal of Enology and Viticulture, 65, 1.

    Article  Google Scholar 

  • Roland, A., Schneider, R., Guernevé, C. L., Razungles, A., & Cavelier, F. (2010). Identification and quantification by LC-MS/MS of a new precursor of 3-mercaptohexan-1-ol (3MH) using stable isotope dilution assay: Elements for understanding the 3MH production in wine. Food Chemistry, 121, 847–855.

    Article  CAS  Google Scholar 

  • Roland, A. R., Schneider, F., Charrier, F., Rossignol, M., & Razungles, A. (2011). Distribution of varietal thiol precursors in the skin and pulp of Melon B, and Sauvignon blanc grapes. Food Chemistry, 125, 139–144.

    Article  CAS  Google Scholar 

  • Roujou de Boubée, D., Van Leeuwen, C., & Dubourdieu, D. (2000). Organoleptic impact of 2-methoxy-3-isobutylpyrazine on red bordeaux and loire wines. Effect of environmental conditions on concentrations in grapes during ripening. Journal of Agricultural and Food Chemistry, 48, 4830–4834.

    Article  Google Scholar 

  • Sakuma, S., Hayashi, S., & Kobayashi, K. (1991). Analytical methods for beer flavor control. Journal of the American Society of Brewing Chemists, 49, 1–3.

    CAS  Google Scholar 

  • Sala, C., Busto, O., Guasch, J., & Zamora, F. (2004). Influence of vine training and sunlight exposure on the 3-alkyl-2-methoxypyrazines content in musts and wines from the Vitis vinifera variety Cabernet Sauvignon. Journal of Agricultural and Food Chemistry, 52, 3492–3497.

    Article  CAS  Google Scholar 

  • Sarrazin, E., Shinkaruk, S., Tominaga, T., Bennetau, B., Frérot, E., & Dubourdieu, D. (2007). Odorous impact of volatile thiols on the aroma of young botrytized sweet wines: Identification and quantification of new sulfanyl alcohols. Journal of Agricultural and Food Chemistry, 55, 1437–1444.

    Article  CAS  Google Scholar 

  • Schneider, R., Razungles, A., Augier, C., & Baumes, R. (2001). Monoterpenic and norisoprenoidic glycoconjugates of Vitis vinifera L. cv. Melon B. as precursors of odorants in Muscadet wines. Journal of Chromatography A, 936, 145–157.

    Article  CAS  Google Scholar 

  • Schönberger, C., & Kostelecky, T. (2011). 125th anniversary review: The role of hops in brewing. Journal of the Institute of Brewing, 117(2011), 259–267.

    Article  Google Scholar 

  • Sefton, M. A., Francis, I. L., & Williams, P. J. (1993). The volatile composition of Chardonnay juices: A study by flavor precursor analysis. American Journal of Enology and Viticulture, 44, 359–370.

    CAS  Google Scholar 

  • Sefton, M. A., Francis, I. L., & Williams, P. J. (1994). Free and bound volatile secondary metabolites of Vitis vinifera grape cv. Sauvignon blanc. Journal of Food Science, 59, 142–147.

    Article  CAS  Google Scholar 

  • Sefton, M. A., Francis, I. L., & Williams, P. J. (1996). The free and bound volatile secondary metabolites of Vitis vinifera grape cv. Semillon. Australian Journal of Grape and Wine Research, 2, 179–183.

    Article  CAS  Google Scholar 

  • Sefton, M. A. (1998). Hydrolytically-released volatile secondary metabolites from a juice sample of Vitis vinifera grape cvs. Merlot and Cabernet Sauvignon. Australian Journal of Grape and Wine Research, 4, 30–38.

    Article  CAS  Google Scholar 

  • Sharpe, F. R., & Laws, D. R. J. (1981). The essential oil of hops––A Review. Journal of the Institute of Brewing, 87, 96–107.

    Article  CAS  Google Scholar 

  • Simpson, R. F. (1978). 1,1,6-Trimethyl-1,2-dihydronaphthalene: An important contributor to the bottle bouquet of wine. Chemistry & Industry, 1, 37.

    Google Scholar 

  • Siebert, T. E., Wood, C., Elsey, G. M., & Pollnitz, A. P. (2008). Determination of rotundone, the pepper aroma impact, in grapes and wine. Journal of Agricultural and Food Chemistry, 56, 3745–3748.

    Google Scholar 

  • Steinhaus, M., & Schieberle, P. (2000). Comparison of the most odoractive compounds in fresh and dried hop cones (Humulus lupulus L. variety Spalter Select) based on GC-olfactometry and odor dilution techniques. Journal of Agricultural and Food Chemistry, 48, 1776–1783.

    Article  CAS  Google Scholar 

  • Stevens, K. L., Bomben, J., Lee, A., & McFadden, W. H. (1966). Volatiles from grapes. Muscat of Alexandria. Journal of Agricultural and Food Chemistry, 14, 249–252.

    Article  CAS  Google Scholar 

  • Swiegers, J., & Pretorius, I. (2007). Modulation of volatile sulfur compounds by wine yeast. Applied Microbiology and Biotechnology, 74, 954–960.

    Article  CAS  Google Scholar 

  • Takoi, K., Itoga, Y., Koie, K., Kosugi, T., Shimase, M., Katayama, Y., Nakayama, Y., & Watari, J. (2010). The contribution of geraniol metabolism to the citrus flavour of beer: synergy of geraniol and β-citronellol under coexistence with excess linalool. Journal of the Institute of Brewing, 116, 251–260.

    Article  CAS  Google Scholar 

  • Taylor, R., & Jenkins, W. (1966). Leucine aminotransferase: II. Purification and characterization. Journal of Biological Chemistry, 241, 4396–4405.

    CAS  Google Scholar 

  • Tominaga, T., Niclass, Y., Frérot, E., & Dubourdieu, D. (2006). Stereoisomeric distribution of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in dry and sweet white wines made from Vitis vinifera (Var. Sauvignon Blanc and Semillon). Journal of Agricultural and Food Chemistry, 54, 7251.

    Article  CAS  Google Scholar 

  • Tressl, R., Friese, L., Fendsack, F., & Köppler, H. (1978). Studies of the volatile composition of hops during storage. Journal of Agricultural and Food Chemistry, 26, 1426–1430.

    Article  CAS  Google Scholar 

  • Ugliano, M. (2009). Enzymes in winemaking. In M. V. Moreno-Arribas & M. C. Polo (Eds.), Wine chemistry and biochemistry (pp. 103–126). New York: Springer..

    Google Scholar 

  • Versini, G., Carlin, S., Dalla Serra, A., Nicolini, G., & Rapp, A. (2002). Formation of 1,1,6-trimethyl-1,2-dihydronaphthalene and other norisoprenoids in wine: Considerations on the kinetics. In P. Winterhalter & R. Rouseff (Eds.), Carotenoid-derived aroma compounds, ACS Symposium Series 802 (pp. 285–299). Washington, DC: American Chemical Society.

    Google Scholar 

  • Verzele, M., & De Keukeleire, D. (1991). Chemistry and analysis of hop and beer bitter acids. Amsterdam: Elsevier.

    Google Scholar 

  • Wang, J., & De Luca, V. (2005). The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ‘foxy’ methylanthranilate. The Plant Journal, 44, 606–619.

    Article  CAS  Google Scholar 

  • Wenzel, K. W. O., & de Vries, M. J. (1968). An investigation of Muscat aroma. South African Journal of Agricultural Science, 11, 273–280.

    Google Scholar 

  • Williams, P. J., Strauss, C. R., & Wilson, B. (1981). Classification of the monoterpenoid composition of Muscat grapes. American Journal of Enology and Viticulture, 32, 230–235.

    CAS  Google Scholar 

  • Winterhalter, P., Sefton, M. A., & Williams, P. J. (1990). Two-dimensional GC-DCCC analysis of the glycoconjugates of monoterpenes, norisoprenoids, and shikimate-derived metabolites from Riesling wine. Journal of Agricultural and Food Chemistry, 38, 1041–1048.

    Article  CAS  Google Scholar 

  • Wood, C., Siebert, T. E., Parker, M., Capone, D. L., Elsey, G. M., Pollnitz, A. P., Eggers, M., Meier, M., Vössing, T., Widder, S., Krammer, G., Sefton, M. A., & Herderich, M. J. (2008). From wine to pepper: Rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. Journal of Agricultural and Food Chemistry, 56, 3738.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Finley .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finley, J.W. (2018). Beer and Wine. In: Principles of Food Chemistry. Food Science Text Series. Springer, Cham. https://doi.org/10.1007/978-3-319-63607-8_13

Download citation

Publish with us

Policies and ethics