Advertisement

Beer and Wine

Chapter
Part of the Food Science Text Series book series (FSTS)

Abstract

Alcoholic beverages are produced by fermentation of sugars to ethanol. Starting materials range from simple sugars to complex carbohydrates that are reduced to simple sugars by hydrolytic cleavage of starches and dextrins. Beer and wind represent direct products from fermentation whereas vodka, rum, whiskey and other distilled spirits and a distillation step.

References

  1. Acree, T. E., Lavin, E. H., Nishida, R., & Watanabe, S. (1990). ο-Amino-acetophenone, a foxy smelling component of Labruscia. In Y. Bessiere & A. F. Thomas (Eds.), Flavour science and technology (pp. 49–52). Chichester: Wiley.Google Scholar
  2. Alba-Lois, L., & Segal-Kischinevzky, C. (2010). Yeast fermentation and the making of beer and wine beer & wine makers. Nature Education, 3(9), 17.Google Scholar
  3. Allen, M. S., Lacey, M. J., Brown, W. V., & Harris, R. L. N. (1990). Occurrence of methoxypyrazines in grapes of Vitis vinifera cv. Cabernet Sauvignon and Sauvignon blanc. In P. Ribéreau-Gayon, & A. Lonvaud (Eds.), Actualités Oenologiques 89: Comptes rendus du 4e Symposium International d’Oenologie, Bordeaux, 1989 (pp. 25–30).Google Scholar
  4. Allen, M. S., Lacey, M. J., Harris, R. L. N., & Brown, W. V. (1991). Contribution of methoxypyrazines to sauvignon blanc wine aroma. American Journal of Enology and Viticulture, 42, 109–112.Google Scholar
  5. Allen, M. S., Lacey, M. J., & Boyd, S. (1994). Determination of methoxypyrazines in red wines by stable isotope dilution gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 42, 1734–1738.Google Scholar
  6. Ardö, Y. (2006). Flavour formation by amino acid catabolism. Biotechnology Advances, 24, 238–224.CrossRefGoogle Scholar
  7. Baek, H. H., Cadwallader, K. R., Marroquin, E., & Silva, J. L. (1997). Identification of predominant aroma compounds in muscadine grape juice. Journal of Food Science, 62, 249.CrossRefGoogle Scholar
  8. Bailly, S., Jerkovic, V., Marchand-Brynaert, J., & Collin, S. (2006). Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols. Journal of Agricultural and Food Chemistry, 54, 7227–7234.C.CrossRefGoogle Scholar
  9. Bardi, L., Cocito, C., & Marzona, M. (1999). Saccharomyces cerevisiae cell fatty acid composition and release during fermentation without aeration and in absence of exogenous lipids. International Journal of Food Microbiology, 47, 133–140.CrossRefGoogle Scholar
  10. Barnett, J. A. (2000). A history of research on yeast 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast, 16, 755–771.CrossRefGoogle Scholar
  11. Bartowsky, E. J., & Pretorius, I. S. (2009). Microbial formation and modification of flavor and off-flavor compounds in wine. In H. König et al. (Eds.), Biology of microorganisms on grapes, in must and in wine (pp. 209–231). Berlin: Springer.CrossRefGoogle Scholar
  12. Bauer, K., Garbe, D., & Surburg, H. (1997). Aromatic compounds. In H. Surburg & J. Panten (Eds.), Common fragrance and flavor materials. Weinheim: Wiley–VCH.CrossRefGoogle Scholar
  13. Bauer, F. F., & Pretorius, I. S. (2000). Yeast stress response and fermentation efficiency: how to survive the making of wine. South African Journal of Enology and Viticulture, 21, 27–51.Google Scholar
  14. Baumes, R. (2009). Wine aroma precursors. In M. V. Moreno-Arribas & M. Carmen Polo (Eds.), Wine chemistry and biochemistry (pp. 251–274). New York: Springer.Google Scholar
  15. Benitez, J. L., Forster, A., De Keukeleire, D., Moir, M., Sharpe, F. R., Verhagen, L. C., & Westwood, K. T. (1997). Hops and hop products. Nuremberg: Verlag Hans Carl.Google Scholar
  16. Boulton, R. (1980). The general relationship between potassium, sodium and pH in grape juice and wine. American Journal of Enology and Viticulture, 31, 182–186.Google Scholar
  17. Buttery, R. G., & Ling, L. C. (1966). The chemical composition of the volatile oil of hops. Brewing Dig, 41, 71–77.Google Scholar
  18. Campo, E., Ferreira, V., Escudero, A., & Cacho, J. (2005). Prediction of the wine sensory properties related to grape variety from dynamicheadspace gas chromatography-olfactometry data. Journal of Agricultural and Food Chemistry, 53, 5682–5690.CrossRefGoogle Scholar
  19. Capone, D. L., & Jeffery, D. W. (2011). Effects of transporting and processing Sauvignon blanc grapes on 3-mercaptohexan-1-ol precursor concentrations. Journal of Agricultural and Food Chemistry, 59, 4659–4667.CrossRefGoogle Scholar
  20. Capone, S. L., Paardon, A. G., Cordente, A. G., & Jeffery, D. W. (2011). Identification and quantitation of 3-S-cysteinylglycinehexan-1-ol (cysgly-3-MH) om Sauvignon blanc grape juice by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 59, 11204–11210.CrossRefGoogle Scholar
  21. Carrau, F., Medina, K., Farina, L., Boido, E., Henschke, P., & Dellacassa, E. (2008). Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Research, 8, 1196–1207.CrossRefGoogle Scholar
  22. Chatonnet, P., Dubourdieu, D., Boidron, J. N., & Pons, M. (1992). The origin of ethylphenols in wines. Journal of the Science of Food and Agriculture, 60, 165–178.Google Scholar
  23. Conway, M. E., & Hutson, S. M. (2000). Mammalian branched-chain aminotransferases. Methods in Enzymology, 324, 355–365.CrossRefGoogle Scholar
  24. Conway, M. E., & Hutson, S. M. (2000). Mammalian branched-chain aminotransferases. Methods in Enzymology, 324, 355–365.Google Scholar
  25. Davoodi, J., Drown, P. M., Bledsoe, R. K., Wallin, R., Reinhart, G. D., & Hutson, S. M. (1998). Overexpression and characterization of the human mitochondrial and cytosolic branched-chain aminotransferases. The Journal of Biological Chemistry, 273, 4982–49890.CrossRefGoogle Scholar
  26. De La Presa-Owens, C., & Noble, A. C. (1997). Effect of storage at elevated temperatures on aroma of Chardonnay wines. American Journal of Enology and Viticulture, 48, 310–316.Google Scholar
  27. De Keukeleire, D. (2000). Fundamentals of beer and hop chemistry. Quimica Nova, 23(1), 108–112.CrossRefGoogle Scholar
  28. Dubourdieu, D., & Tominaga, T. (2009). Polyfunctional thiol compounds. In M. V. Moreno-Arribas & M. C. Polo (Eds.), Wine chemistry and biochemistry (pp. 275–293). New York: Springer.CrossRefGoogle Scholar
  29. Ebler, S. E., & Thorngate, J. H. (2009). Wine chemistry and flavor: Looking into the crystal glass. Journal of Agricultural and Food Chemistry, 57, 8098–8108.CrossRefGoogle Scholar
  30. Ferreira, V., Ortín, N., Escudero, A., López, R., & Cacho, J. (2002). Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. Journal of Agricultural and Food Chemistry, 50(4048), 54.Google Scholar
  31. Ferreira, V. (2010). Volatile aroma compounds and wine sensory attributes. In A. G. Reynolds (Ed.), Managing wine quality (Vol. 1, pp. 3–23). Boston: CRC Press.Google Scholar
  32. Ferreora, V. (2010). Volatile aroma compounds and wine sensory attributes. In Managing wine quality viticulture and wine quality (pp. 3–28). Cambridge: Woodhead Publishing Series in Food Science, Technology and Nutrition.CrossRefGoogle Scholar
  33. Forster, A., Beck, B., & Schmidt, R. (1995). Untersuchungen zu Hopfenpolyphenolen. In European brewery convention, Proceedings of the 25th Congress, Brussels (pp. 143–150). Oxford: Oxford University Press.Google Scholar
  34. Francis, I.L., Kassara, S., Noble, A.C., & Williams, P. J. (1998). The contribution of glycoside precursors to Cabernet Sauvignon and Merlot aroma: Sensory and compositional studies. In A. L. Waterhouse, & S. E. Ebeler (Eds.), Chemistry of wine flavor (pp. 13–30).Google Scholar
  35. Francis, I. L., & Newton, J. L. (2005). Determining wine aroma from compositional data. Australian Journal of Grape and Wine Research, 11, 114–126.CrossRefGoogle Scholar
  36. Ghidossi, R., Poupot, C., Thibon, C., Pons, A., Darriet, P., Riquier, L., De Revel, G., & Mietton Peuchot, M. (2012). The influence of packaging on wine conservation. Food Control, 23, 302–311.CrossRefGoogle Scholar
  37. Godoy, A., Herrera, T., & Ulloa, M. (2003). Más allá del pulque y el tepache: Las bebidas alcohólicas no destiladas indígenas de México. Mexico: UNAM, Instituto de Investigaciones Antropológicas.Google Scholar
  38. González-Barreiro, C., Rial-Otero, R., Cancho-Grande, B., & Simal-Gándara, J. (2013). Wine aroma compounds in grapes: A critical review. Critical Reviews in Food Science and Nutrition, 55, 202–218. https://doi.org/10.1080/10408398.2011.650336.CrossRefGoogle Scholar
  39. Günata, Y. Z., Bayonove, C. L., Baumes, R. L., & Cordonnier, R. E. (1985). The aroma of grapes. I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. Journal of Chromatography A, 331, 83–90.CrossRefGoogle Scholar
  40. Guth, H. (1995). Potente Aromastoffe von Weißweinen unterschiedlicher Rebsorten—Identifizierung und Vergleich. Lebensmittelchemie, 49, 107.Google Scholar
  41. Guth, H. (1996). Identification of character impact odorants of different white wine. Helvetica Chimica Acta, 79, 1559–1571.CrossRefGoogle Scholar
  42. Guth, H. (1997a). Identification of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 45, 3022.CrossRefGoogle Scholar
  43. Guth, H. (1997b). Quantitation and sensory studies of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 45, 3027.CrossRefGoogle Scholar
  44. Guth, H. (1998). Comparison of different white wine varieties in odor profiles by instrumental analysis and sensory studies. In A. L. Waterhouse & S. E. Ebeler (Eds.), Chemistry of wine flavor (p. 39). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  45. Hanke, S., Ditz, V., Herrmann, M., Back, W., Becker, T., & Krottenthaler, M. (2010). Influence of ethyl acetate, isoamyl acetate and linalool on off-flavour perception in beer. Brewing Science, 63, 94–99.Google Scholar
  46. Hernandez-Orte, P., Ibarz, M., Cacho, J., & Ferreira, V. (2005). Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chemistry, 89, 163–174.CrossRefGoogle Scholar
  47. Herraiz, T., & Ough, C. S. (1993). Chemical and technological factors determining tetrahydro-beta-carboline-3-carboxylic acid content in fermented alcoholic beverages. Journal of Agricultural and Food Chemistry, 41(6), 959–964.Google Scholar
  48. Hornsey, I. S. (2003). A history of beer and brewing (p. 10). Cambridge: RSC.Google Scholar
  49. Jackson, R. S. (2008). Wine science: Principals and applications (p. 281). Burlington, MA: Academic Press.Google Scholar
  50. Karbowiak, T., Gougeon, R. D., Alinc, J. B., Brachais, L., Debeaufort, F., Voilley, A., & Chassagne, D. (2009). Wine oxidation and the role of cork. Critical Reviews in Food Science and Nutrition, 50, 20–52.CrossRefGoogle Scholar
  51. Kowaka, K., Fukuoka, Y., Kawasaki, H., & Asano, K. (1983). The true value of aroma hops in brewing, Proceedings of the European Brewery Convention Congress, London (pp. 71–78). Oxford: IRL Press.Google Scholar
  52. Lacey, M. J., Allen, M. S., Harris, R. L. N., & Brown, W. V. (1991). Methoxypyrazines in Sauvignon blanc grapes and wines. American Journal of Enology and Viticulture, 42, 103–108.Google Scholar
  53. Lee, S. J., & Noble, A. C. (2003). Characterization of odor-active compounds in Californian Chardonnay wines using GC-olfactometry and GC-mass spectrometry. Journal of Agricultural and Food Chemistry, 51, 8036–8044.CrossRefGoogle Scholar
  54. Lee, S. J., & Noble, A. C. (2006). Use of partial least squares regression and multidimensional scaling on aroma models of California Chardonnay wines. American Journal of Enology and Viticulture, 57, 363–370.Google Scholar
  55. Lermusieau, G., & Collin, S. (2003). Volatile sulfur compounds in hops and residual concentrations in beer—a review. Journal of the American Society of Brewing Chemists, 61, 119–113.Google Scholar
  56. Liang, Z., Sang, M., Fan, P., Wu, B., Wang, L., Duan, W., & Li, S. (2011). Changes of polyphenols, sugars, and organic acid in 5 vitis genotypes during berry ripening. Journal of Food Science, 76(9), C1231–C1238.CrossRefGoogle Scholar
  57. Liu, S.-Q. (2002). Malolactic fermentation in wine—beyond deacidification. Journal of Applied Microbiology, 92, 589–601.CrossRefGoogle Scholar
  58. Mateo, J. J., & Jimeńez, M. (2000). Monoterpenes in grape juice and wines. Journal of Chromatography A, 881, 557–567.CrossRefGoogle Scholar
  59. Marriott, R., (2001). Hop aroma products and their application in brewing. In Proceedings of the European brewery symposium on flavour and flavour stability, Nancy, France, Monograph 31. Fachverlag Hans Carl: Nürnberg, Germany, pp. 137–142.Google Scholar
  60. McGovern, P. E., Hartung, U., Badler, V. R., Glusker, D. L., & Exner, L. J. (1997). The beginnings of winemaking and viniculture in the ancient near east and Egypt. Expedition, 39, 3–21.Google Scholar
  61. McGovern, P. E., Zhang, J., Tang, J., Zhang, Z., Hall, G. R., Moreau, R. A., Nunez, A., Butrym, E. D., Richards, M. P., Wang, C.-S., Cheng, G., Zhao, Z., & Wang, C. (2004). Fermented beverages of preand proto-historic China. Proceedings of the National Academy of Sciences of the United States of America, 101, 17593–17598.CrossRefGoogle Scholar
  62. Mendes-Pinto, M. M., Silva Ferreira, A. C., Caris-Veyrat, C., & Guedes de Pinho, P. (2005). Carotenoid, chlorophyll, and chlorophyll derived compounds in grapes and port wines. Journal of Agricultural and Food Chemistry, 53, 10034–10041.CrossRefGoogle Scholar
  63. Mendes-Pinto, M. M. (2009). Carotenoid breakdown products the–norisoprenoids–in wine aroma. Archives of Biochemistry and Biophysics, 483, 236–245..Google Scholar
  64. Mestres, M., Busto, O., & Guasch, J. (2000). Analysis of organic sulfur compounds in wine aroma. Journal of Chromatography A, 881, 569–581.CrossRefGoogle Scholar
  65. Michel, R. H., McGovern, P. E., & Badler, V. R. (1993). The first wine and beer: chemical detection of ancient fermented beverages. Analytical Chemistry, 65, 408A–413A.Google Scholar
  66. Moio, L., & Etievant, P. X. (1995). Ethyl anthranilate, ethyl cinnamate, 2,3-dihydrocinnamate, and methyl anthranilate: Four important odorants identified in Pinot noir wines of Burgundy. American Journal of Enology and Viticulture, 46, 392–398.Google Scholar
  67. Nielsen, T. (2009). Character impact hop aroma compounds in ale. In Hop flavor and aroma proceedings of the 1st international brewers symposium 2006, Corvallis, USA (pp. 59–78).Google Scholar
  68. Nisbet, M. A., Tobias, H. J., Brenna, J. T., Sacks, G. L., & Mansfield, A. K. (2014). Quantifying the contribution of grape hexoses to wine volatiles by high-precision [U13C]-glucose tracer studies. Journal of Agricultural and Food Chemistry, 62, 6820–6827.CrossRefGoogle Scholar
  69. Ohloff, G. (1978). The importance of minor components in flavors and fragrances. Perfumer and Flavorist, 3, 11–22.Google Scholar
  70. Pasteur, L. (1876). Studies on fermentation. London: Macmillan.Google Scholar
  71. Polášková, P., Herszage, J., & Ebeler, S. E. (2008). Wine flavor: Chemistry in a glass. Chemical Society Reviews, 37, 2478–2489.CrossRefGoogle Scholar
  72. Pollach, G., Hein, W., & Hollaus, F. (1996). Einsatz von Hopfenprodukten als Bakteriostaticum in der Zuckerindustrie. Zuckerindustrie, 121, 919–926.Google Scholar
  73. Rapp, A. (1998). Volatile flavour of wine: Correlation between instrumental analysis and sensory perception. Nahrung, 42, 351–363.CrossRefGoogle Scholar
  74. Razungles, A., Günata, Z., Pinatel, S., Baumes, R., & Bayonove, C. (1993). Quantitative studies on terpenes, norisoprenoids and their precursors in several varieties of grapes. Sciences des Aliments, 13, 59–72.Google Scholar
  75. Razungles, A., Bayonove, C. L., Cordonnier, R. E., & Sapis, J. C. (1988). Grape carotenoids: Changes during the maturation period and localization in mature berries. American Journal of Enology and Viticulture, 39, 44–48.Google Scholar
  76. Ribéreau-Gayon, P., Boidron, J. N., & Terrier, A. (1975). Aroma of Muscat grape varieties. Journal of Agricultural and Food Chemistry, 23, 1042–1047.Google Scholar
  77. Robinson, A. L., Boss, P. K., Solomon, P. S., Trengrove, R. D., Heymann, H., & Ebler, S. E. (2014). Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. The American Journal of Enology and Viticulture, 65, 1.CrossRefGoogle Scholar
  78. Roland, A., Schneider, R., Guernevé, C. L., Razungles, A., & Cavelier, F. (2010). Identification and quantification by LC-MS/MS of a new precursor of 3-mercaptohexan-1-ol (3MH) using stable isotope dilution assay: Elements for understanding the 3MH production in wine. Food Chemistry, 121, 847–855.CrossRefGoogle Scholar
  79. Roland, A. R., Schneider, F., Charrier, F., Rossignol, M., & Razungles, A. (2011). Distribution of varietal thiol precursors in the skin and pulp of Melon B, and Sauvignon blanc grapes. Food Chemistry, 125, 139–144.CrossRefGoogle Scholar
  80. Roujou de Boubée, D., Van Leeuwen, C., & Dubourdieu, D. (2000). Organoleptic impact of 2-methoxy-3-isobutylpyrazine on red bordeaux and loire wines. Effect of environmental conditions on concentrations in grapes during ripening. Journal of Agricultural and Food Chemistry, 48, 4830–4834.CrossRefGoogle Scholar
  81. Sakuma, S., Hayashi, S., & Kobayashi, K. (1991). Analytical methods for beer flavor control. Journal of the American Society of Brewing Chemists, 49, 1–3.Google Scholar
  82. Sala, C., Busto, O., Guasch, J., & Zamora, F. (2004). Influence of vine training and sunlight exposure on the 3-alkyl-2-methoxypyrazines content in musts and wines from the Vitis vinifera variety Cabernet Sauvignon. Journal of Agricultural and Food Chemistry, 52, 3492–3497.CrossRefGoogle Scholar
  83. Sarrazin, E., Shinkaruk, S., Tominaga, T., Bennetau, B., Frérot, E., & Dubourdieu, D. (2007). Odorous impact of volatile thiols on the aroma of young botrytized sweet wines: Identification and quantification of new sulfanyl alcohols. Journal of Agricultural and Food Chemistry, 55, 1437–1444.CrossRefGoogle Scholar
  84. Schneider, R., Razungles, A., Augier, C., & Baumes, R. (2001). Monoterpenic and norisoprenoidic glycoconjugates of Vitis vinifera L. cv. Melon B. as precursors of odorants in Muscadet wines. Journal of Chromatography A, 936, 145–157.CrossRefGoogle Scholar
  85. Schönberger, C., & Kostelecky, T. (2011). 125th anniversary review: The role of hops in brewing. Journal of the Institute of Brewing, 117(2011), 259–267.CrossRefGoogle Scholar
  86. Sefton, M. A., Francis, I. L., & Williams, P. J. (1993). The volatile composition of Chardonnay juices: A study by flavor precursor analysis. American Journal of Enology and Viticulture, 44, 359–370.Google Scholar
  87. Sefton, M. A., Francis, I. L., & Williams, P. J. (1994). Free and bound volatile secondary metabolites of Vitis vinifera grape cv. Sauvignon blanc. Journal of Food Science, 59, 142–147.CrossRefGoogle Scholar
  88. Sefton, M. A., Francis, I. L., & Williams, P. J. (1996). The free and bound volatile secondary metabolites of Vitis vinifera grape cv. Semillon. Australian Journal of Grape and Wine Research, 2, 179–183.CrossRefGoogle Scholar
  89. Sefton, M. A. (1998). Hydrolytically-released volatile secondary metabolites from a juice sample of Vitis vinifera grape cvs. Merlot and Cabernet Sauvignon. Australian Journal of Grape and Wine Research, 4, 30–38.CrossRefGoogle Scholar
  90. Sharpe, F. R., & Laws, D. R. J. (1981). The essential oil of hops––A Review. Journal of the Institute of Brewing, 87, 96–107.CrossRefGoogle Scholar
  91. Simpson, R. F. (1978). 1,1,6-Trimethyl-1,2-dihydronaphthalene: An important contributor to the bottle bouquet of wine. Chemistry & Industry, 1, 37.Google Scholar
  92. Siebert, T. E., Wood, C., Elsey, G. M., & Pollnitz, A. P. (2008). Determination of rotundone, the pepper aroma impact, in grapes and wine. Journal of Agricultural and Food Chemistry, 56, 3745–3748.Google Scholar
  93. Steinhaus, M., & Schieberle, P. (2000). Comparison of the most odoractive compounds in fresh and dried hop cones (Humulus lupulus L. variety Spalter Select) based on GC-olfactometry and odor dilution techniques. Journal of Agricultural and Food Chemistry, 48, 1776–1783.CrossRefGoogle Scholar
  94. Stevens, K. L., Bomben, J., Lee, A., & McFadden, W. H. (1966). Volatiles from grapes. Muscat of Alexandria. Journal of Agricultural and Food Chemistry, 14, 249–252.CrossRefGoogle Scholar
  95. Swiegers, J., & Pretorius, I. (2007). Modulation of volatile sulfur compounds by wine yeast. Applied Microbiology and Biotechnology, 74, 954–960.CrossRefGoogle Scholar
  96. Takoi, K., Itoga, Y., Koie, K., Kosugi, T., Shimase, M., Katayama, Y., Nakayama, Y., & Watari, J. (2010). The contribution of geraniol metabolism to the citrus flavour of beer: synergy of geraniol and β-citronellol under coexistence with excess linalool. Journal of the Institute of Brewing, 116, 251–260.CrossRefGoogle Scholar
  97. Taylor, R., & Jenkins, W. (1966). Leucine aminotransferase: II. Purification and characterization. Journal of Biological Chemistry, 241, 4396–4405.Google Scholar
  98. Tominaga, T., Niclass, Y., Frérot, E., & Dubourdieu, D. (2006). Stereoisomeric distribution of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in dry and sweet white wines made from Vitis vinifera (Var. Sauvignon Blanc and Semillon). Journal of Agricultural and Food Chemistry, 54, 7251.CrossRefGoogle Scholar
  99. Tressl, R., Friese, L., Fendsack, F., & Köppler, H. (1978). Studies of the volatile composition of hops during storage. Journal of Agricultural and Food Chemistry, 26, 1426–1430.CrossRefGoogle Scholar
  100. Ugliano, M. (2009). Enzymes in winemaking. In M. V. Moreno-Arribas & M. C. Polo (Eds.), Wine chemistry and biochemistry (pp. 103–126). New York: Springer..Google Scholar
  101. Versini, G., Carlin, S., Dalla Serra, A., Nicolini, G., & Rapp, A. (2002). Formation of 1,1,6-trimethyl-1,2-dihydronaphthalene and other norisoprenoids in wine: Considerations on the kinetics. In P. Winterhalter & R. Rouseff (Eds.), Carotenoid-derived aroma compounds, ACS Symposium Series 802 (pp. 285–299). Washington, DC: American Chemical Society.Google Scholar
  102. Verzele, M., & De Keukeleire, D. (1991). Chemistry and analysis of hop and beer bitter acids. Amsterdam: Elsevier.Google Scholar
  103. Wang, J., & De Luca, V. (2005). The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ‘foxy’ methylanthranilate. The Plant Journal, 44, 606–619.CrossRefGoogle Scholar
  104. Wenzel, K. W. O., & de Vries, M. J. (1968). An investigation of Muscat aroma. South African Journal of Agricultural Science, 11, 273–280.Google Scholar
  105. Williams, P. J., Strauss, C. R., & Wilson, B. (1981). Classification of the monoterpenoid composition of Muscat grapes. American Journal of Enology and Viticulture, 32, 230–235.Google Scholar
  106. Winterhalter, P., Sefton, M. A., & Williams, P. J. (1990). Two-dimensional GC-DCCC analysis of the glycoconjugates of monoterpenes, norisoprenoids, and shikimate-derived metabolites from Riesling wine. Journal of Agricultural and Food Chemistry, 38, 1041–1048.CrossRefGoogle Scholar
  107. Wood, C., Siebert, T. E., Parker, M., Capone, D. L., Elsey, G. M., Pollnitz, A. P., Eggers, M., Meier, M., Vössing, T., Widder, S., Krammer, G., Sefton, M. A., & Herderich, M. J. (2008). From wine to pepper: Rotundone, an obscure sesquiterpene, is a potent spicy aroma compound. Journal of Agricultural and Food Chemistry, 56, 3738.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Louisiana State UniversityLakewood RanchUSA

Personalised recommendations