Herbs and Spices

Chapter
Part of the Food Science Text Series book series (FSTS)

Abstract

Herbs and spices are important food ingredients. The human consumption of herbs and spices can date back to 5000 BC. The world production of spices is estimated to be 8,730,271 tons in 2013 (FAOSTAT). The major producer countries are India, China, Thailand and USA. Table 12.1 summarizes some of the more common spices, the portion of the plant and their region of cultivation. Herbs and spices are consumed as is or formulated into various food, beverage and dietary supplement products. Due to their characteristic chemical compounds, herbs and spices are used to flavor foods and beverages, to inhibit microbial growth and preserve food quality. Increasing evidence also suggest consumption of certain herbs and spices bring in potential health benefits. Although the definitions sometimes overlap, generally herbs are plant leaves or flowering parts either fresh or dried and spices are small pieces from roots, bark or seeds of plants. Most spices also contain essential oils which are normally recovered by steam distillation.

References

  1. Adedeji, J., Hartman, T. G., & Ho, C. (1993). Flavor characterization of different varieties of vanilla beans. Perfumer and Flavors, 18, 115–133.Google Scholar
  2. Angmor, J. E., Dicks, D. M., Evans, W. C., & Sandra, D. K. (1972). Studies on Cinnamomum zeylanicum. Part 1. The essential oil components of C. zeylanicum Nees grown in Ghana. Planta Medica, 21, 3.CrossRefGoogle Scholar
  3. Arana, F.E. (1944, October). Vanilla curing and its chemistry. Bulletin (Federal Experiment Station of the United States Department of Agriculture in Mayaguez, Puerto Rico) (42): 1–17.Google Scholar
  4. Azeez, S. (2008). Vanilla. In V. A. Parthasarathy, C. Bhageerathy, & T. J. Zachariah (Eds.), Chemistry of spices. Cambridge, MA: CABI.Google Scholar
  5. Baeg, I. H., & So, S. H. (2013). The world ginseng market and the ginseng (Korea). Journal of Ginseng Research, 37(1), 1–7.CrossRefGoogle Scholar
  6. Bandyopadhyay, C., Narayan, V. S., & Variyar, P. S. (1990). Phenolics of green pepper berries (Piper nigrum L). Journal of Agricultural and Food Chemistry, 38(8), 1696–1699.CrossRefGoogle Scholar
  7. Baruah, A., & Nath, S. C. (2004). In Ravindran et al. (Eds.), Cinnamon and Cassia (pp. 199–210). Boca Raton: CRC Press.Google Scholar
  8. Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Spices, salt and vinegar. In Food chemistry (3rd rev. ed., pp. 971–985). Berlin, Heidelberg: Springer-Verlag.Google Scholar
  9. BBC. (2015, July 23). Dried oregano in ‘latest food fraud’ says Which? Retrieved from http://www.bbc.com/
  10. Borges, P., & Pino, J. (1993). Preparation of black pepper oleoresin by alcohol extraction. Nahrung, 37(2), 127–130.CrossRefGoogle Scholar
  11. Broadhurst, C. L., Polansky, M. M., & Anderson, R. A. (2000). Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro. Journal of Agricultural and Food Chemistry, 48(3), 849–852.Google Scholar
  12. Buescher, R., & Yang, L. (2000). Turmeric. In G. L. Lauro & F. J. Fancis (Eds.), Natural food colorants. Science and technology (pp. 205–226). New York: Marcel Dekker.Google Scholar
  13. Butt, M. S., Pasha, I., Sultan, M. T., Randhawa, M. A., Saeed, F., & Ahmed, W. (2013). Black pepper and health claims: a comprehensive treatise. Critical Reviews in Food Science and Nutrition, 53(9), 875–886.CrossRefGoogle Scholar
  14. Ceylan, E., & Fung, D. Y. (2004). Antimicrobial activity of spices. Journal of Rapid Methods & Automation in Microbiology, 12(1), 1–55.CrossRefGoogle Scholar
  15. Chempakam, B., Parthasarathy, V. A., & Villupanoor, A. (2008a). Turmeric. In A. Parthasarathy, C. Bhageerathy, & J. Zachariah (Eds.), Chemistry of spices. Cambridge, MA: CABI.Google Scholar
  16. Chempakam, B., Sindhu, S., & Villupanoor, A. (2008b). Small cardamom. In A. Parthasarathy, C. Bhageerathy, & J. Zachariah (Eds.), Chemistry of spices. Cambridge, MA: CABI.Google Scholar
  17. Choi, S., Jung, S. Y., Ko, Y. S., Koh, S. R., Rhim, H., & Nah, S. Y. (2002). Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus laevis oocytes. Molecular Pharmacology, 61(4), 928–935.CrossRefGoogle Scholar
  18. Ciocan, D., & Bara, I. (2007). Plant products as antimicrobial agents. Analele Stiintifice ale Universitatii “Alexandru Ioan Cuza” din Iasi Sec. II a. Genetica si Biologie Moleculara, 8(1).Google Scholar
  19. Cripps, H. P. (1967). Oleoresin turmeric, application in pickle production. Glass Packer Process, 45, 48–49.Google Scholar
  20. Duke, J. A. (1994). Biologically active compounds in important spices. In G. Charalambous (Ed.), Spices, herbs and edible fungi (pp. 225–250). New York: Elsevier.Google Scholar
  21. Eiserlie, R. J. (1966). The role of oleoresin turmeric in the pickling process. Glass Packer Process, 45, 48–49.Google Scholar
  22. FAOSTAT. (2017). Food supply data. Retrieved from March 31, 2017.Google Scholar
  23. Ferreira, S. R. S., Nikolov, Z. L., Doraiswamy, L. K., Meireles, M. A. A., & Petenate, A. J. (1999). Supercritical fluid extraction of black pepper (Piper nigrum L.) essential oil. Journal of Supercritical Fluids, 14, 235–245.Google Scholar
  24. Frenkel, C., Ranadive, A. S., Vázquez, J. T., & Havkin-Frenkel, D. (2010). Curing of vanilla. In H.-F. Daphna & B. Faith (Eds.), Handbook of vanilla science and technology (pp. 79–106). New York: Wiley.CrossRefGoogle Scholar
  25. Gilani, A. H., Jabeen, Q., Khan, A. U., & Shah, A. J. (2008). Gut modulatory, blood pressure lowering, diuretic and sedative activities of cardamom. Journal of Ethnopharmacology, 115(3), 463–472.CrossRefGoogle Scholar
  26. Govindarajan, V. S. (1977). Pepper–chemistry, technology, and quality evaluation. CRC Critical Reviews in Food Science and Nutrition, 115–250.Google Scholar
  27. Govindarajan, V. S. (1980). Turmeric—chemistry, technology, and quality. Critical Reviews in Food Science and Nutrition, 12(3), 199–301.CrossRefGoogle Scholar
  28. Govindarajan, V. S. (1982). Ginger—chemistry, technology, and quality evaluation: part 1. Critical Reviews in Food Science and Nutrition, 17(1), 1–96.Google Scholar
  29. Gruenwald, J., Freder, J., & Armbruester, N. (2010). Cinnamon and health. Critical Reviews in Food Science and Nutrition, 50(9), 822–834.CrossRefGoogle Scholar
  30. Hallman, K., Aleck, K., Dwyer, B., Lloyd, V., Quigley, M., Sitto, N., et al. (2017). The effects of turmeric (curcumin) on tumor suppressor protein (p53) and estrogen receptor (ERα) in breast cancer cells. Breast Cancer: Targets and Therapy, 9, 153–161.Google Scholar
  31. Havkin-Frenkel, D., French, J. C., & Graft, N. M. (2004). Interrelation of curing and botany in vanilla (vanilla planifolia) bean. Acta Horticulturae, 629, 93–102.CrossRefGoogle Scholar
  32. Havkin-Frenkel, D., French, J. C., Pak, F. E., & Frenkel, C. (2005). Inside vanilla: vanilla planifolia’s botany, curing options and future market prospects. Perfume Flavour, 30, 36–55.Google Scholar
  33. Innova Market Insights (2017, March 31). Retrieved from http://www.innovadatabase.com.
  34. Jagella, T., & Grosch, W. (1999). Flavour and off flavour compounds of black and white pepper (Piper nigrum L.). II. Odour activity values of desirable and undesirable odorants of black pepper. European Food Research and Technology, 209(1), 22–26.CrossRefGoogle Scholar
  35. Jamal, A., Javed, K., Aslam, M., & Jafri, M. A. (2006). Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. Journal of Ethnopharmacology, 103(2), 149–153.CrossRefGoogle Scholar
  36. Jarvill-Taylor, K. J., Anderson, R. A., & Graves, D. J. (2001). A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. Journal of the American College of Nutrition, 20(4), 327–336.CrossRefGoogle Scholar
  37. Kikuzaki, H., Kawai, Y., & Nakatani, N. (2001). 1, 1-Diphenyl-2-picrylhydrazyl radical-scavenging active compounds from greater cardamom (Amomum subulatum Roxb.) Journal of Nutritional Science and Vitaminology, 47(2), 167–171.CrossRefGoogle Scholar
  38. Kleijnen, J., & Knipschild, P. (1992). Ginkgo biloba. The Lancet, 340(8828), 1136–1139.CrossRefGoogle Scholar
  39. Klimes, I., & Lamparsky, D. (1976). Vanilla volatiles—a comprehensive analysis. International Flavours and Food Additives, 7, 272–291.Google Scholar
  40. Korikanthimath, V. S., Rao, G., & Hiremath, G. M. (2002). Cultivation of cardamom (Eletteria cardamomum) in valley bottoms under evergreen forest shade. Journal of Medicinal and Aromatic Plant Sciences, 24, 53–59.Google Scholar
  41. Krishnamoorthy, B., Rema, J., Zachariah, T. J., Jose, A., & Gopalam, A. (1996). Navasree and Nithyasreee –two high yielding and high quality cinnamon (Cinnamomum verum—Bercht & Presl.) Journal of Spices and Aromatic Crops, 5(1), 28–33.Google Scholar
  42. Kurokawa, M., Kumeda, C. A., Yamamura, J., Kamiyama, T., & Shiraki, K. (1998). Antipyretic activity of cinnamyl derivatives and related compounds in influenza virus-infected mice. European Journal of Pharmacology, 348, 45–51.CrossRefGoogle Scholar
  43. Kwon, B. M., Cho, Y. K., Lee, S. H., Nam, J. Y., Bok, S. H., Chun, S. K., Kim, J. A., & Lee, I. R. (1996). 2-Hydroxycinnamaldehyde from stem bark of Cinnamomum cassia. Planta Medica, 62, 183–184.CrossRefGoogle Scholar
  44. Lawrence, B. M. (1978). Major tropical spices—Cardamom (Elettaria cardamomum). In F. von Bruchhausen (Ed.), Hagers Handbuch der pharmazeutischen Praxis (pp. 105–155). Wheaton, IL: Allured Publishers.Google Scholar
  45. Lee, H. S., & Ahn, Y. J. (1998). Growth inhibiting effects of Cinnamomum cassia bark derived materials on human intestinal bacteria. Journal of Agricultural and Food Chemistry, 46, 8–12.CrossRefGoogle Scholar
  46. Lee, C. H., & Kim, J. H. (2014). A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. Journal of Ginseng Research, 38(3), 161–166.CrossRefGoogle Scholar
  47. Leela, N. K. (2008). Cinnamon and cassia. In V. A. Parthasarathy, B. Chempakam, & T. John Zachariah (Eds.), Chemistry of spices. Cambridge, MA: CABI.Google Scholar
  48. Leung, K. W., & Wong, A. S. T. (2010). Pharmacology of ginsenosides: a literature review. Chinese Medicine, 5(1), 20.CrossRefGoogle Scholar
  49. Lewis, Y. S., Nambudiri, E. S., & Phillip, T. (1966). Composition of cardamom oils perfume. Journal of Essential Oil Research, 57, 623–626.Google Scholar
  50. Li, T. S. C. (2006). The range of medicinal herbs and spices. In K. V. Peter (Ed.), Handbook of herbs and spices (pp. 113–125). Cambridge, UK: Woodhead Publishing Limited.CrossRefGoogle Scholar
  51. Liao, G. (2016, December 6). Turmeric powder sample tested to contain staggeringly excessive lead. Taiwan News. Retrieved from http://www.taiwannews.com.tw/
  52. Miyamura, M., Nohara, T., Tomimatsu, T., & Nishioka, I. (1983). Seven aromatic compounds from the bark of Cinnamomum cassia. Phytochemistry, 22, 215–218.CrossRefGoogle Scholar
  53. Miyazawa, M., & Kameoka, H. (1988). Volatile flavour components of Zingiberis Rhizoma (Zingiber officinale Roscoe). Agricultural and Biological Chemistry, 52(11), 2961–2963.Google Scholar
  54. Neerati, P., Devde, R., & Gangi, A. K. (2014). Evaluation of the effect of curcumin capsules on glyburide therapy in patients with type-2 diabetes mellitus. Phytotherapy Research, 28(12), 1796–1800.CrossRefGoogle Scholar
  55. Nigam, M. C., Handa, K. L., Nigam, I. C., & Leo, L. (1965). Essential oils and their constituents: xxix. The essential oil of marihuana: composition of genuine Indian Cannabis sativa L. Canadian Journal of Chemistry, 43(12), 3372–3376.CrossRefGoogle Scholar
  56. Nohara, T., Kashiwada, Y., Tomimatsu, T., & Nishioka, I. (1982). Studies on the constituents of Cinnamomum cortex VII. Two novel diterpenes from bark of Cinnamomum cassia. Phytochemistry, 21, 2130–2132.CrossRefGoogle Scholar
  57. Nohara, T., Kashiwada, Y., & Nishioka, I. (1985). Cinncassiol E, a diterpene from the bark of Cinnamomum cassia. Phytochemistry, 24, 1849–1850.CrossRefGoogle Scholar
  58. O’Hara, M., Kiefer, D., Farrell, K., & Kemper, K. (1998). A review of 12 commonly used medicinal herbs. Archives of Family Medicine, 7(6), 523.CrossRefGoogle Scholar
  59. Perez-Silva, A., Odoux, E., Brat, P., Ribeyre, F., Rodriguez-Jimenes, G., Robles-Olvera, V., et al. (2006). GC–MS and GC–olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla planifolia G. Jackson) beans. Food Chemistry, 99, 728–735.Google Scholar
  60. Perotti, A. G. (1975). Curcumin––a little known but useful vegetable colour. Industrial Aliment for Products and Vegetables, 14(6), 66–68.Google Scholar
  61. Qin, B., Nagasaki, M., Ren, M., Bajotto, G., Oshida, Y., & Sato, Y. (2003). Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Research and Clinical Practice, 62, 139–148.Google Scholar
  62. Ranadive, A. S. (1994). Vanilla cultivation, curing, chemistry, technology and commercial products. In G. Charalambous (Ed.), Spices, herbs and edible fungi (pp. 517–577). Amsterdam: Elsevier.Google Scholar
  63. Sahebkar, A. (2014). Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis. Phytotherapy Research, 28(5), 633–642.CrossRefGoogle Scholar
  64. Salzer, U. J. (1975). Analytical evaluation of seasoning extracts (oleoresins) and essential oils from seasonings. I. International Flavours and Food Additives, 6(3), 151–157.Google Scholar
  65. Scaglione, F., Ferrara, F., Dugnani, S., Falchi, M., Santoro, G., & Fraschini, F. (1989). Immunomodulatory effects of two extracts of Panax ginseng CA Meyer. Drugs under Experimental and Clinical Research, 16(10), 537–542.Google Scholar
  66. Scaglione, F., Ferrara, F., Dugnani, S., Falchi, M., Santoro, G., & Fraschini, F. (1990). Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drugs Under Experimental and Clinical Research, 16, 537–542.Google Scholar
  67. Senanayake, U. M., Lee, T. H., & Wills, R. B. H. (1978). Volatile constituents of cinnamon (Cinnamomum zeylanicum) oils. Journal of Agricultural and Food Chemistry, 26, 822–824.Google Scholar
  68. Singh, G., Maurya, S., DeLampasona, M. P., & Catalan, C. A. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology, 45(9), 1650–1661.CrossRefGoogle Scholar
  69. Singletary, K. (2010). Ginger: an overview of health benefits. Nutrition Today, 45(4), 171–183.CrossRefGoogle Scholar
  70. Suhaj, M. (2006). Spice antioxidants isolation and their antiradical activity: a review. Journal of Food Composition and Analysis, 19(6), 531–537.CrossRefGoogle Scholar
  71. Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218.CrossRefGoogle Scholar
  72. Tanaka, S., Yoon, Y. H., Fukui, H., Tabata, M., Akira, T., & Okan, K. (1989). Antiulcerogenic compounds isolated from Chinese cinnamon. Planta Medica, 55, 245–248.CrossRefGoogle Scholar
  73. Tapsell, L. C., Hemphill, I., Cobiac, L., Sullivan, D. R., Fenech, M., Patch, C. S., Roodenrys, S., Keogh, J. B., Clifton, P. M., Williams, P. G., Fazio, V. A., & Inge, K. E. (2006). Health benefits of herbs and spices: the past, the present, the future. Medical Journal of Australia, 185(4), S1–S24.Google Scholar
  74. USP (2017). Food fraud database. Retrieved from http://www.foodfraud.org/
  75. Vaughn, A. R., Branum, A., & Sivamani, R. K. (2016). Effects of turmeric (Curcuma longa) on skin health: a systematic review of the clinical evidence. Phytotherapy Research, 30(8), 1243–1264.CrossRefGoogle Scholar
  76. Velayudhan, K. C., Muralidharan, V. K., Amalraj, V. A., Gautum, P. L., Mandal, S., & Dineshkumar (1999). Curcuma genetic resources. Scientific Monograph; New Delhi: No. 4 National Bureau of Plant Genetic Resources.Google Scholar
  77. Viljoen, E., Visser, J., Koen, N., & Musekiwa, A. (2014). A systematic review and meta-analysis of the effect and safety of ginger in the treatment of pregnancy-associated nausea and vomiting. Nutrition Journal, 13(1), 20.CrossRefGoogle Scholar
  78. Vogler, B. K., Pittler, M. H., & Ernst, E. (1999). The efficacy of ginseng. A systematic review of randomised clinical trials. European Journal of Clinical Pharmacology, 55(8), 567–575.CrossRefGoogle Scholar
  79. Weinmann, S., Roll, S., Schwarzbach, C., Vauth, C., & Willich, S. N. (2010). Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatrics, 10(1), 14.CrossRefGoogle Scholar
  80. Wijesekera, R. O. (1978). Historical overview of the cinnamon industry. CRC Critical Reviews in Food Science and Nutrition, 10(1), 1–30.CrossRefGoogle Scholar
  81. Yang, Y. S., Su, Y. F., Yang, H. W., Lee, Y. H., Chou, J. I., & Ueng, K. C. (2014). Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytotherapy Research, 28(12), 1770–1777.CrossRefGoogle Scholar
  82. Yu, H. S., Lee, S. Y., & Jang, C. G. (2007). Involvement of 5-HT1A and GABAA receptors in the anxiolytic-like effects of Cinnamomum cassia in mice. Pharmacology Biochemistry and Behavior, 87, 164–170.Google Scholar
  83. Yue, G., Jing, L., Li, Y., Lei, S., Dan, L., Liping, P., Ying, W., & Shucheng, H. A. (2016). International Journal of Nanomedicine, 11, 5757–5770.Google Scholar
  84. Zachariah, T. J., & Parthasarathy, V. A. (2008). Black pepper. In V. A. Parthasarathy et al. (Eds.), Chemistry of spices (pp. 21–40). Bakeham Lane, UK: CABI.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.United States PharmacopeiaRockvilleUSA
  2. 2.Louisiana State UniversityLakewood RanchUSA

Personalised recommendations