Part of the Food Science Text Series book series (FSTS)


Water has a chemical formula of H2O which represents two hydrogen atoms covalently bound to one oxygen atom. Water is an odorless, tasteless and transparent liquid at room temperature. It appears colorless in small quantities although in larger bodies there is an inherent blue hue. Ice and water vapor are also colorless, although ice under pressure as in glaciers exerts a range of blue colors.


  1. Acker, L. (1969). Water activity and enzyme. Food Technology, 23, 1257–1270.Google Scholar
  2. Aguilera, J. F., Prieto, C., & Fonollá, J. (1990). Protein and energy metabolism of lactating Granadina goats. The British Journal of Nutrition, 63(2), 165–175.CrossRefGoogle Scholar
  3. Blandamer, M. J., Engberts, J. B. F. N., Gleeson, P. T., & Reis, J. C. R. (2005). Activity of water in aqueous systems; a frequently neglected property. Chemical Society Reviews, 34(5), 440–458.CrossRefGoogle Scholar
  4. Bone, D. P. (1987). Practical applications of water activity and moisture relations in foods. In L. B. Rockland & L. R. Beuchat (Eds.), Water activity: Theory and application to food. New York: Marcel Dekker, Inc.Google Scholar
  5. Breiten, B., Lockett, M. R., Sherman, W., Fujita, S., Al-Sayah, M., Lange, H., Bowers, C. M., Heroux, A., Krilov, G., & Whitesides, G. M. (2013). Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. Journal of the American Chemical Society, 135(41), 15579–15584.CrossRefGoogle Scholar
  6. Brunauer, S., Emmett, P. J., & Teller, E. (1938). Absorption of gasses in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.Google Scholar
  7. Charton, M., & Charton, B. I. (1982). The structural dependence of amino acid hydrophobicity parameters. Journal of Theoretical Biology, 99(4), 629–644.CrossRefGoogle Scholar
  8. Chirife, J., & Buera, M. P. (1996). A critical review of the effect of some non-equilibrium situations and glass transitions on water activity values of food in the microbiological growth range. Journal of Food Engineering, 25, 531–552.CrossRefGoogle Scholar
  9. Drapon, R. (1985). Enzyme activity as a function of water activity. In D. Simato & J. L. Multon (Eds.), Properties of water in foods. Dordrecht: Martinus Nijhoff Publishers.Google Scholar
  10. Franks, F. (2000). Water: a matrix of life (2nd ed.). London: Royal Society of Chemistry.Google Scholar
  11. Johnston, M. R., & Lin, R. C. (1987). FDA views on the importance of aw in good manufacturing practice. In L. B. Rockland & L. R. Beuchat (Eds.), Water activity: Theory and application to food. New York: Marcel Dekker, Inc.Google Scholar
  12. Jouppila, Κ., & Roos, Y. H. (1994). The physical state of amorphous corn starch and its impact on crystallization. Carbohydrate Polymers, 32, 95–104.CrossRefGoogle Scholar
  13. Kapsalis, J. G. (1987). Influences of hysteresis and temperature on moisture sorption isotherms. In L. B. Rockland & L. R. Beuchat (Eds.), Water activity: Theory and application to food. New York: Marcel Dekker, Inc.Google Scholar
  14. Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Advances in Protein Chemistry, 14, 1–63.CrossRefGoogle Scholar
  15. Klotz, I. M. (1965). Role of water structure in macromolecules. Federation Proceedings, 24(Suppl 15), S24–S33.Google Scholar
  16. Koop, T., Luo, B., Tsias, A., & Peter, T. (2000). Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406(6796), 611–614.CrossRefGoogle Scholar
  17. Labuza, T. P. (1968). Sorption phenomena in foods. Food Technology, 22, 263–272.Google Scholar
  18. Labuza, T. P. (1980). The effect of water activity on reaction kinetics of food deterioration. Food Technology, 34(4), 36–41.Google Scholar
  19. Labuza, T. P., Tannenbaum, S. R., & Karel, M. (1970). Water content and stability of low-moisture and intermediate-moisture foods. Food Technology, 24, 543–550.Google Scholar
  20. Landolt, H. H., Bornstein R., & Roth, W. A. (1923) Umgearb. und verm.Google Scholar
  21. Leake, L. I. (2006). Water activity and food quality. Food Technology, 60, 62–67.Google Scholar
  22. Leung, H. K. (1987). Influence of water activity on chemical activity. In L. B. Rockland & L. R. Beuchat (Eds.), Water activity: Theory and applications to food (pp. 27–54). New York: Marcel Dekker.Google Scholar
  23. Levine, H., & Slade, L. (1986). A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs). Carbohydrate Polymers, 6, 213–244.CrossRefGoogle Scholar
  24. Levine, H., & Slade, L. (1999). The “food polymer science” approach to flour functionality and ingredient technology in biscuit baking. In Macromolecular symposia (Vol. 140, pp. 77–80). Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA.Google Scholar
  25. Lockett, M., Lange, H., Breiten, B., Heroux, A., Sherman, W., Rappoport, D., Yau, P. O., Snyder, P. W., & Whitesides, G. M. (2013). The binding of benzoarylsulfonamide ligands to human carbonic anhydrase is insensitive to formal fluorination of the ligand. Angew Chem Int Ed Engl, 52, 7714–7717.CrossRefGoogle Scholar
  26. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). James protein structure and function in molecular cell biology (4th ed.). New York: W H Freeman.Google Scholar
  27. Loncin, H., Gurian, J. M., & Loncin, M. E. (1968). Blood coagulation, fibrinolysis and coronary heart disease: observations in Malaysia. Journal of Atherosclerosis Research, 8(3), 471–482.CrossRefGoogle Scholar
  28. Lusena, C. V., & Cook, W. H. (1953). Ice propagation in systems of biological interest. I Effect of membranes and solutes in a model cell system. Archives of Biochemistry and Biophysics, 46, 232–240.CrossRefGoogle Scholar
  29. Lusena, C. V., & Cook, W. H. (1954). Ice propagation in systems of biological interest. II Effect of solutes at rapid cooling rates. Archives of Biochemistry and Biophysics, 50, 243–251.CrossRefGoogle Scholar
  30. Lusena, C. V., & Cook, W. H. (1955). Ice propagation in systems of biological interest. III Effect of solutes on nucleation and growth of ice crystals. Archives of Biochemistry and Biophysics, 57, 277–284.CrossRefGoogle Scholar
  31. Martinez, M. (1968). Effects of various steroids on the morphology and function of human fallopian tubes. Revista chilena de obstetricia y ginecologia, 33(6), 353–362.Google Scholar
  32. Mathlouthi, M. (2001). Water content, water activity, water structure and the stability of foodstuffs. Food Control, 12, 409–417.CrossRefGoogle Scholar
  33. Meryman, H. T., & Pauling, L. (1960). Cryobiology. New York: Academic.Google Scholar
  34. Meryman, H. T. (1966). The interpretation of freezing water rates in biological materials. Cryobioloy, 2(4), 16–70.Google Scholar
  35. Palzer, S. (2009). Influence of material properties pm the agglomeration of water soluble particles. Powder Technology, 189, 318.CrossRefGoogle Scholar
  36. Perry, R. (1963). In H., Chilton, C. H., & Kirkpatrick, S. D. (Eds.). Chemical engineers’ handbook (4th ed.). New York: McGraw-Hill.Google Scholar
  37. Perry, R. H., & Green, D. W. (2007). Perry’s chemical engineers’ handbook (8th ed.). New York: McGraw-Hill. Retrieved from, http://www.slideshare.n.Google Scholar
  38. Riedel, L. (1959). Calorimetric studies of the freezing of white bread and other flour products. Kältetechn, 11, 41–46.Google Scholar
  39. Rockland, L. B., & Nishi, S. K. (1980). Influence of water activity on food product quality and stability. Food Technology, 34(4), 42–51.Google Scholar
  40. Roos, Y. H. (1993). Water activity and physical state effects on amorphous food stability. Journal of Food Processing & Preservation, 16, 433–447.CrossRefGoogle Scholar
  41. Roos, Y. H. (1995). Glass transition-related physico-chemical changes in foods. Food Technology, 49(10), 97–102.Google Scholar
  42. Roos, Y. H., & Drusch, S. (2015). Phase transitions in foods (2nd ed.). San Diego: Academic.Google Scholar
  43. Roos, Y. H., & Himberg, M. J. (1994). Nonenzymatic browning behavior, as related to glass transition of a food model at chilling temperatures. Journal of Agricultural and Food Chemistry, 42, 893–898.CrossRefGoogle Scholar
  44. Roos, Y., & Karel, M. (1991a). d. Plasticizing effect of water on thermal behaviour and crystallization of amorphous food models. Journal of Food Science, 56, 38–43.CrossRefGoogle Scholar
  45. Roos, Y., & Karel, M. (1991b). e. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. Journal of Food Science, 56, 1676–1681.CrossRefGoogle Scholar
  46. Roos, Y. H., & Karel, M. (1991c). Amorphous state and delayed ice formation in sucrose solutions. International Journal of Food Science and Technology, 26, 553–566.CrossRefGoogle Scholar
  47. Roos, Y. H., & Karel, M. (1991d). Phase transition of amorphous sucrose and frozen sucrose solutions. Journal of Food Science, 56, 266–267.CrossRefGoogle Scholar
  48. Roos, Y. H., & Potes, N. (2015). Quantification of protein hydration, glass transitions, and structural relaxations of aqueous protein and carbohydrate–protein systems. The Journal of Physical Chemistry. B, 119, 7077–7086.CrossRefGoogle Scholar
  49. Roos, Y. H., Jouppila, K., & Zielasko, B. (1996). Nonenzymatic browning-induced water plasticization. Journal of Thermal Analysis, 47, 1437–1450.CrossRefGoogle Scholar
  50. Sa, J., Kwak, G., Lee, B. R., Park, D., Han, K., & Lee, K. (2013). H, H, H, H. Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation. Scientific Reports, 3, 2428.CrossRefGoogle Scholar
  51. Salwin, H., & Slawson, V. (1959). Moisture transfer in combinations of dehydrated foods. Food Technology, 13, 715–718.Google Scholar
  52. Saravacos, G. D. (1967). Effect of the drying method on the water sorption of dehydrated apple and potato. Journal of Food Science, 32, 81–84.CrossRefGoogle Scholar
  53. Schiraldi, A., Fessas, D., & Signorelli, M. (2012). Water activity in biological systems—A review. Polish Journal of Food and Nutrition Sciences, 62, 5–13.CrossRefGoogle Scholar
  54. Speedy, R. J. (1984). Self-replicating structures in water. The Journal of Physical Chemistry, 88, 3364–3373.CrossRefGoogle Scholar
  55. Trombetta, G., Di Bona, C., & Grazi, E. (2005). The transition of polymers into a network of polymers alters per se the water activity. International Journal of Biological Macromolecules, 35(1–2), 15–18.CrossRefGoogle Scholar
  56. van den Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems: Theoretical aspects. In L. B. Rockland & G. F. Steward (Eds.), Water activity—Influences on food quality. New York: Academic Press.Google Scholar
  57. Wierbicki, E., & Deatherage, F. E. (1958). Determination of water-holding capacity of fresh meats. Journal of Agricultural and Food Chemistry, 6, 387–392.CrossRefGoogle Scholar
  58. Wolfe, J., & Bryant, G. (1999). Physical stresses in cells at low temperatures. In International congress of refrigeration: Refrigeration into the third millennium, 20th, Sydney, Australia, Sept. 19–24, 1999 (pp. 1377–1390).Google Scholar
  59. Wolfe, J., & Bryant, G. (2001). Cellular cryobiology: thermodynamic and mechanical effects. International Journal of Refrigeration, 24, 438–450.CrossRefGoogle Scholar
  60. Wolfe, J., Bryant, G., & Koster, K. (2002). What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters, 23, 157–166.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yrjo H. Roos
    • 1
  • John W. Finley
    • 2
  • John M. deMan
    • 3
  1. 1.School of Food and Nutritional ScienceUniversity College CorkCorkIreland
  2. 2.Louisiana State UniversityLakewood RanchUSA
  3. 3.Department of Food ScienceUniversity of GuelphGuelphCanada

Personalised recommendations