Skip to main content

The Cooperative Hunters – Efficient and Scalable Drones Swarm for Multiple Targets Detection

  • Chapter
  • First Online:
Swarms and Network Intelligence in Search

Part of the book series: Studies in Computational Intelligence ((SCI,volume 729))

Abstract

This work examines the Cooperative Hunters problem, where a swarm of Unmanned Air Vehicles (UAVs) is used for searching after one or more “evading targets”, which freely maneuver in a predefined area while trying to avoid detection by the swarm’s drones. By arranging themselves into an efficient geometric collaborative flight formation, the drones optimize their integrated sensing capabilities, enabling the completion of a successful search of a rectangular territory. This designed is shown to be able to guarantee the detection of the targets, even in cases where the targets are faster than the swarm’s drones and have better sensors. This is achieved through the inherent scalability of the proposed design which can compensate any addition to the targets’ ability to maneuver or foresee the behavior of the drones with an increase in the number of drones.

This chapter is based on work previously published in parts in [7, 9, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As in reality the sensors have finite detection time, the value of D used in the model can be slightly smaller than the actual sensors’ range, in order to generate positive overlap between a pair of UAVs moving in parallel (see more details in Sect. 5).

References

  1. S. Alpern, S. Gal, The Theory of Search Games and Rendezvous (Kluwer Academic Publishers, Dordrecht, 2003)

    MATH  Google Scholar 

  2. Y. Altshuler, A.M. Bruckstein, I.A. Wagner, Swarm robotics for a dynamic cleaning problem, in IEEE Swarm Intelligence Symposium (2005), pp. 209–216

    Google Scholar 

  3. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Shape factor‘s effect on a dynamic cleaners swarm, in Third International Conference on Informatics in Control, Automation and Robotics (ICINCO), the Second International Workshop on Multi-Agent Robotic Systems (MARS) (2006), pp. 13–21

    Google Scholar 

  4. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, On swarm optimality in dynamic and symmetric environments. Economics 7, 11 (2008)

    Google Scholar 

  5. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Collaborative exploration in grid domains, in Sixth International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2009)

    Google Scholar 

  6. Y. Altshuler, I.A. Wagner, V. Yanovski, A.M. Bruckstein, Multi-agent cooperative cleaning of expanding domains. Int. J. Robot. Res. 30, 1037–1071 (2010)

    Article  Google Scholar 

  7. Y. Altshuler, V. Yanovski, I.A. Wagner, A.M. Bruckstein, The cooperative hunters - efficient cooperative search for smart targets using uav swarms, in Second International Conference on Informatics in Control, Automation and Robotics (ICINCO), the First International Workshop on Multi-Agent Robotic Systems (MARS) (2005), pp. 165–170

    Google Scholar 

  8. Y. Altshuler, V. Yanovsky, A.M. Bruckstein, I.A. Wagner, Efficient cooperative search of smart targets using uav swarms. Robotica 26, 551–557 (2008)

    Article  Google Scholar 

  9. Y. Altshuler, V. Yanovsky, I. Wagner, A. Bruckstein, Swarm intelligencesearchers, cleaners and hunters, in Swarm Intelligent Systems (2006), pp. 93–132

    Google Scholar 

  10. Y. Altshuler, Multi Agents Robotics in Dynamic Environments. Ph.D. thesis, Israeli Institute of Technology (2010)

    Google Scholar 

  11. Y. Altshuler, A. Bruckstein, On short cuts-or-fencing in rectangular strips (2010), arXiv:1011.5920

  12. Y. Altshuler, A.M. Bruckstein, The complexity of grid coverage by swarm robotics, in ANTS 2010 (LNCS, 2010), pp. 536–543

    Google Scholar 

  13. Y. Altshuler, A.M. Bruckstein, Static and expanding grid coverage with ant robots: complexity results. Theor. Comput. Sci. 412(35), 4661–4674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Altshuler, S. Dolev, Y. Elovici, N. Aharony, Ttled random walks for collaborative monitoring, in NetSciCom, Second International Workshop on Network Science for Communication Networks, vol. 3 (San Diego, CA, USA, 2010)

    Google Scholar 

  15. Y. Altshuler, A. Pentland, S. Bekhor, Y. Shiftan, A. Bruckstein, Optimal dynamic coverage infrastructure for large-scale fleets of reconnaissance uavs (2016), arXiv:1611.05735

  16. Y. Altshuler, R. Puzis, Y. Elovici, S. Bekhor, A.S. Pentland, On the rationality and optimality of transportation networks defense: a network centrality approach, in Securing Transportation Systems (2015), pp. 35–63

    Google Scholar 

  17. Y. Altshuler, E. Shmueli, G. Zyskind, O. Lederman, N. Oliver, A. Pentland, Campaign optimization through behavioral modeling and mobile network analysis. IEEE Trans. Comput. Soc. Syst. 1(2), 121–134 (2014)

    Article  Google Scholar 

  18. Y. Altshuler, E. Shmueli, G. Zyskind, O. Lederman, N. Oliver, A.S. Pentland, Campaign optimization through mobility network analysis, in Geo-Intelligence and Visualization Through Big Data Trends (2015), pp. 33–74

    Google Scholar 

  19. R.C. Arkin, Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robot. Auton. Syst. 6, 105–122 (1990)

    Article  Google Scholar 

  20. T. Balch, R. Arkin, Behavior-based formation control for multi-robot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  21. R. Bejar, B. Krishnamachari, C. Gomes, B. Selman, Distributed constraint satisfaction in a wireless sensor tracking system, in Proceedings of the IJCAI-01 Workshop on Distributed Constraint Reasoning (2001)

    Google Scholar 

  22. C. Bennett, On the nature and origin of complexity in discrete, homogeneous, locally-interacting systems. Found. Phys. 16, 585–592 (1986). doi:10.1007/BF01886523

    Article  MathSciNet  Google Scholar 

  23. J. Cacace, A. Finzi, V. Lippiello, M. Furci, N. Mimmo, L. Marconi, A control architecture for multiple drones operated via multimodal interaction in search & rescue mission, in 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (IEEE, 2016), pp. 233–239

    Google Scholar 

  24. C. Candea, H. Hu, L. Iocchi, D. Nardi, M. Piaggio, Coordinating in multi-agent robocup teams. Robot. Auton. Syst. 36(2–3), 67–86 (2001)

    Article  MATH  Google Scholar 

  25. D. Chevallier, S. Payandeh, On kinematic geometry of multi-agent manipulating system based on the contact force information, in The Sixth International Conference on Intelligent Autonomous Systems (IAS-6) (2000), pp. 188–195

    Google Scholar 

  26. H. Chung, E. Polak, J.O. Royset, S. Sastry, On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles. Naval Res. Logist. (NRL), 58(8), 804–820 (2011)

    Google Scholar 

  27. M.G.C.A. Cimino, A. Lazzeri, G. Vaglini, Combining stigmergic and flocking behaviors to coordinate swarms of drones performing target search, in 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA) (IEEE, 2015), pp. 1–6

    Google Scholar 

  28. M.G.C.A. Cimino, A. Lazzeri, G. Vaglini, Using differential evolution to improve pheromone-based coordination of swarms of drones for collaborative target detection, in Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods (SCITEPRESS-Science and Technology Publications, Lda, 2016), pp. 605–610

    Google Scholar 

  29. G. Dudek, M. Jenkin, E. Milios, D. Wilkes, Robotic exploration as graph construction. IEEE Trans. Robot. Autom. 7, 859–865 (1991)

    Article  Google Scholar 

  30. M.A.A. El-Hadidy, Fuzzy optimal search plan for n-dimensional randomly moving target. Int. J. Comput. Methods 13(06), 1650038 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Felner, Y. Shoshani, Y. Altshuler, A.M. Bruckstein, Multi-agent physical a* with large pheromones. J. Auton. Agents Multi-Agent Syst. 12(1), 3–34 (2006)

    Article  Google Scholar 

  32. A.A. Galyaev, E.P. Maslov, On the border patrolling problem. J. Comput. Syst. Sci. Int. 50(5), 837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. S.K. Gan, R. Fitch, S. Sukkarieh, Real-time decentralized search with inter-agent collision avoidance, in 2012 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2012), pp. 504–510

    Google Scholar 

  34. S.K. Gan, S. Sukkarieh, Multi-uav target search using explicit decentralized gradient-based negotiation, in 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 751–756

    Google Scholar 

  35. B.P. Gerkey, M.J. Mataric, Sold! market methods for multi-robot control. IEEE Trans. Robot. Autom. Spec. Issue Multi-robot Syst. 18(5), 758–768 (2002)

    Article  Google Scholar 

  36. N. Gordon, I.A. Wagner, A.M. Bruckstein, Discrete bee dance algorithms for pattern formation on a grid, in IEEE International Conference on Intelligent Agent Technology (IAT03) (2003), pp. 545–549

    Google Scholar 

  37. P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  38. T. Haynes, S. Sen, Adaptation and learning in multi-agent systems, Evolving Behavioral Strategies in Predators and Prey, vol. 1042, Lecture Notes in Computer Science (Springer, Berlin, 1986), pp. 113–126

    Google Scholar 

  39. S. Hettiarachchi, W. Spears, Moving swarm formations through obstacle fields, in International Conference on Artificial Intelligence (2005)

    Google Scholar 

  40. W. Kerr, D. Spears, Robotic simulation of gases for a surveillance task, in Intelligent Robots and Systems (IROS 2005) (2005), pp. 2905–2910

    Google Scholar 

  41. S. Kirkpatrick, J.J. Schneider, How smart does an agent need to be? Int. J. Mod. Phys. C 16, 139–155 (2005)

    Article  MATH  Google Scholar 

  42. R. Klein, C. Levcopoulos, A. Lingas, Approximation algorithms for the geometric firefighter and budget fence problems, in LATIN (Springer, 2014), pp. 261–272

    Google Scholar 

  43. S. Koenig, Y. Liu, Terrain coverage with ant robots: a simulation study, in AGENTS’01 (2001)

    Google Scholar 

  44. B. Koopman, Search and Screening: General Principles with Historical Applications (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  45. B.O. Koopman, The theory of search ii, target detection. Oper. Res. 4(5), 503–531 (1956)

    Article  MathSciNet  Google Scholar 

  46. P. Lanillos, S.K. Gan, E. Besada-Portas, G. Pajares, S. Sukkarieh, Multi-uav target search using decentralized gradient-based negotiation with expected observation. Inf. Sci. 282, 92–110 (2014)

    Google Scholar 

  47. Y.-Y. Liu, J.C. Nacher, T. Ochiai, M. Martino, Y. Altshuler, Prospect theory for online financial trading. PloS one 9(10), e109458 (2014)

    Google Scholar 

  48. D. MacKenzie, R. Arkin, J. Cameron, Multiagent mission specification and execution. Auton. Robots 4(1), 29–52 (1997)

    Article  Google Scholar 

  49. M.J. Mataric, Designing emergent behaviors: From local interactions to collective intelligence, in Proceedings of the Second International Conference on Simulation of Adaptive Behavior, ed. by J. Meyer, H. Roitblat, S. Wilson (MIT Press, 1992), pp. 432–441

    Google Scholar 

  50. M.J. Mataric. Interaction and Intelligent Behavior. Ph.D. thesis, Massachusetts Institute of Technology (1994)

    Google Scholar 

  51. T.G. McGee, J.K. Hedrick, Guaranteed strategies to search for mobile evaders in the plane, in Proceedings of the 2006 American Control Conference (2006), pp. 14–16

    Google Scholar 

  52. P.M. Morse, G.E. Kimball, Methods of Operations Research (Wiley, MIT Press and New York, 1951)

    Google Scholar 

  53. W. Pan, Y. Altshuler, A. Pentland, Decoding social influence and the wisdom of the crowd in financial trading network, in Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom) (IEEE, 2012), pp. 203–209

    Google Scholar 

  54. L.E. Parker, Alliance: An architecture for fault-tolerant multi-robot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  MathSciNet  Google Scholar 

  55. K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint, M. Baum, Cooperative Control for Autonomous Air Vehicles, chapter Cooperative Control and Optimization (Kluwer Academic, Boston, 2002)

    Google Scholar 

  56. S. Perez-Carabaza, E. Besada-Portas, J.A. Lopez-Orozco, J.M. de la Cruz, A real world multi-uav evolutionary planner for minimum time target detection, in Proceedings of the 2016 on Genetic and Evolutionary Computation Conference (ACM, 2016), pp. 981–988

    Google Scholar 

  57. R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, A.S. Pentland, Augmented betweenness centrality for environmentally-aware traffic monitoring in transportation networks

    Google Scholar 

  58. G. Rabideau, T. Estlin, T. Chien, A. Barrett, A comparison of coordinated planning methods for cooperating rovers, in Proceedings of the American Institute of Aeronautics and Astronautics (AIAA) Space Technology Conference (1999)

    Google Scholar 

  59. E. Regev, Y. Altshuler, A.M. Bruckstein, The cooperative cleaners problem in stochastic dynamic environments (2012), arXiv:1201.6322

  60. I. Rekleitis, V. Lee-Shuey, A. Peng Newz, H. Choset, Limited communication, multi-robot team based coverage, in IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  61. I.M. Rekleitis, G. Dudek, E. Milios, Experiments in free-space triangulation using cooperative localization, in IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (IROS) (2003)

    Google Scholar 

  62. B. Shucker, J.K. Bennett, Target tracking with distributed robotic macrosensors, in Military Communications Conference (MILCOM 2005), vol. 4 (2005), pp. 2617–2623

    Google Scholar 

  63. L. Steels, Cooperation between distributed agents through self-organization, in Decentralized A.I - Proc. first European Workshop on Modeling Autonomous Agents in Multi-Agents world ed. by Y. DeMazeau, J.P. Muller (Elsevier, 1990), pp. 175–196

    Google Scholar 

  64. L.D. Stone, Theory of Optimal Search (Academic Press, New York, 1975)

    MATH  Google Scholar 

  65. J. Svennebring, S. Koenig, Building terrain-covering ant robots: a feasibility study. Auton. Robots 16(3), 313–332 (2004)

    Article  Google Scholar 

  66. S.M. Thayer, M.B. Dias, B.L. Digney, A. Stentz, B. Nabbe, M. Hebert, Distributed robotic mapping of extreme environments, in Proceedings of SPIE, Mobile Robots XV and Telemanipulator and Telepresence Technologies VII vol. 4195 (2000)

    Google Scholar 

  67. A. Thorndike, Summary of antisubmarine warfare operations in world war ii. Summary report, NDRC Summary Report (1946)

    Google Scholar 

  68. P. Vincent, I. Rubin, A framework and analysis for cooperative search using uav swarms, in ACM Simposium on Applied Computing (2004)

    Google Scholar 

  69. I.A. Wagner, Y. Altshuler, V. Yanovski, A.M. Bruckstein, Cooperative cleaners: a study in ant robotics. Int. J. Robot. Res. (IJRR) 27(1), 127–151 (2008)

    Article  Google Scholar 

  70. I.A. Wagner, A.M. Bruckstein, From ants to a(ge)nts: a special issue on ant–robotics. Ann. Math. Artif. Intell. Spec. Issue Ant Robot. 31(1–4), 1–6 (2001)

    MATH  Google Scholar 

  71. M.P. Wellman, P.R. Wurman, Market-aware agents for a multiagent world. Robot. Auton. Syst. 24, 115–125 (1998)

    Article  Google Scholar 

  72. A. Yamashita, M. Fukuchi, J. Ota, T. Arai, H. Asama, Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3d environment, in In Proceedings of IEEE International Conference on Robotics and Automation (2000), pp. 3144–3151

    Google Scholar 

  73. M. Zhang, J. Song, L. Huang, C. Zhang, Distributed cooperative search with collision avoidance for a team of unmanned aerial vehicles using gradient optimization. J. Aerosp. Eng. 04016064 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaniv Altshuler .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Altshuler, Y., Pentland, A., Bruckstein, A.M. (2018). The Cooperative Hunters – Efficient and Scalable Drones Swarm for Multiple Targets Detection. In: Swarms and Network Intelligence in Search. Studies in Computational Intelligence, vol 729. Springer, Cham. https://doi.org/10.1007/978-3-319-63604-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63604-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63602-3

  • Online ISBN: 978-3-319-63604-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics