Skip to main content

Collaborative Patrolling Swarms in Stochastically Expanding Environments

  • Chapter
  • First Online:
  • 986 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 729))

Abstract

In this work we study the strengths and limitations of collaborative teams of simple robotic agents, operating in stochastic environments. In particular, we discuss the efficient use of a swarm of “ant robots” (e.h. simple drones with a limited technical specifications) for covering a connected region on the \(\mathbf{Z}^{2}\) grid, whose area and shape is unknown in advance and which expands stochastically. Specifically, we discuss the problem where an initial connected region of \(S_0\) “squares” expands outward with probability p at every time step. On this grid region a group of k limited and simple drone-agents operate, with the goal of “cleaning” this unmapped and dynamically expanding region. A preliminary version of this problem was discussed in [3, 7], involving a deterministic expansion of a region in the grid. We present probabilistic lower bounds for the minimal number of agents and minimal time required to enable a collaborative coverage of the expanding region, regardless of the algorithm used and the drones’ hardware and software specifications. Furthermore, we provide a method of producing ad-hoc lower bounds, for any given desired correctness probability. We further present impossibility results that for any given values of k (the number of drones used) and spreading probability provides an upper bound for the minimal value of the initial area of the expanding region which is guaranteed to be impossible to clear. Finally, we support the analytic bounds with empirical computer simulation results.

This chapter is based on work previously published in [41].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E.U. Acar, Y. Zhang, H. Choset, M. Schervish, A.G. Costa, R. Melamud, D.C. Lean, A. Gravelin, Path planning for robotic demining and development of a test platform, in International Conference on Field and Service Robotics (2001), pp. 161–168

    Google Scholar 

  2. L. Alonso, A.S. Goldstein, E.M. Reingold, ‘lion and man’: upper and lower bounds. Research Report RR-1700, INRIA. Projet PSYCHO ERGO (1992)

    Google Scholar 

  3. Y. Altshuler, A.M. Bruckstein, I.A. Wagner, Swarm robotics for a dynamic cleaning problem, in IEEE Swarm Intelligence Symposium (2005), pp. 209–216

    Google Scholar 

  4. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Shape factor‘s effect on a dynamic cleaners swarm, in Third International Conference on Informatics in Control, Automation and Robotics (ICINCO), the Second International Workshop on Multi-Agent Robotic Systems (MARS) (2006), pp. 13–21

    Google Scholar 

  5. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, On swarm optimality in dynamic and symmetric environments. Economics. 7, 11 (2008)

    Google Scholar 

  6. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Collaborative exploration in grid domains, in Sixth International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2009)

    Google Scholar 

  7. Y. Altshuler, I.A. Wagner, V. Yanovski, A.M. Bruckstein, Multi-agent cooperative cleaning of expanding domains. Int. J. Robot. Res. 30, 1037–1071 (2010)

    Article  Google Scholar 

  8. Y. Altshuler, V. Yanovski, D. Vainsencher, I.A. Wagner, A.M. Bruckstein, On minimal perimeter polyminoes, in The 13th International Conference on Discrete Geometry for Computer Imagery (DGCI2006) (2006), pp. 17–28

    Google Scholar 

  9. Y. Altshuler, V. Yanovski, I.A. Wagner, A.M. Bruckstein, The cooperative hunters - efficient cooperative search for smart targets using uav swarms, in Second International Conference on Informatics in Control, Automation and Robotics (ICINCO), the First International Workshop on Multi-Agent Robotic Systems (MARS) (2005), pp. 165–170

    Google Scholar 

  10. Y. Altshuler, V. Yanovsky, A.M. Bruckstein, I.A. Wagner, Efficient cooperative search of smart targets using uav swarms. Robotica 26, 551–557 (2008)

    Article  Google Scholar 

  11. Y. Altshuler, V. Yanovsky, I. Wagner, A. Bruckstein, Swarm intelligencesearchers, cleaners and hunters, in Swarm Intelligent Systems (2006), pp. 93–132

    Google Scholar 

  12. Y. Altshuler, A. Bruckstein, On short cuts-or-fencing in rectangular strips (2010), arXiv:1011.5920

  13. Y. Altshuler, A.M. Bruckstein, Static and expanding grid coverage with ant robots: complexity results. Theor. Comput. Sci. 412(35), 4661–4674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Altshuler, S. Dolev, Y. Elovici, N. Aharony, Ttled random walks for collaborative monitoring, in NetSciCom, Second International Workshop on Network Science for Communication Networks, vol. 3 (San Diego, CA, USA, 2010)

    Google Scholar 

  15. Y. Altshuler, A. Pentland, S. Bekhor, Y. Shiftan, A. Bruckstein, Optimal dynamic coverage infrastructure for large-scale fleets of reconnaissance uavs (2016), arXiv:1611.05735

  16. Y. Altshuler, R. Puzis, Y. Elovici, S. Bekhor, A.S. Pentland, On the rationality and optimality of transportation networks defense: a network centrality approach, in Securing Transportation Systems, pp. 35–63

    Google Scholar 

  17. R.C. Arkin, T. Balch, Artificial Intelligence and Mobile Robots, Cooperative Multi Agent Robotic Systems (MIT Press, Cambridge, 1998)

    Google Scholar 

  18. M.A. Batalin, G.S. Sukhatme, Spreading out: a local approach to multi-robot coverage, in 6th International Symposium on Distributed Autonomous Robotics Systems (2002)

    Google Scholar 

  19. R. Bejar, B. Krishnamachari, C. Gomes, B. Selman, Distributed constraint satisfaction in a wireless sensor tracking system, in Proceedings of the IJCAI-01 Workshop on Distributed Constraint Reasoning (2001)

    Google Scholar 

  20. F. Berger, A. Gilbers, A. Grne, R. Klein, How many lions are needed to clear a grid? Algorithms 2(3), 1069–1086 (2009)

    Article  MathSciNet  Google Scholar 

  21. G.D. Birkhoff, Proof of the Ergodic Theorem. Proc. Natl. Acad. Sci. USA 17(12), 656–660 (1931)

    Article  MATH  Google Scholar 

  22. R. Borie, C. Tovey, S. Koenig, Algorithms and complexity results for pursuit-evasion problems, in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2009), pp.59–66

    Google Scholar 

  23. V. Braitenberg, Vehicles (MIT Press, Cambridge, 1984)

    Google Scholar 

  24. Z. Butler, A. Rizzi, R. Hollis, Distributed coverage of rectilinear environments, in Proceedings of the Workshop on the Algorithmic Foundations of Robotics (2001)

    Google Scholar 

  25. G. Chalkiadakis, E. Markakis, C. Boutilier, Coalition formation under uncertainty: bargaining equilibria and the bayesian core stability concept, in AAMAS ’07: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems (ACM, New York, NY, USA, 2007), pp. 1–8

    Google Scholar 

  26. S.A. DeLoach, M. Kumar, Multi-agent systems engineering: an overview and case study.Intelligence Integration in Distributed Knowledge Management (Idea Group Inc (IGI), 2008), pp. 207–224

    Google Scholar 

  27. G. Dudek, M. Jenkin, E. Milios, D. Wilkes, Robotic exploration as graph construction. IEEE Trans. Robot. Autom. 7, 859–865 (1991)

    Article  Google Scholar 

  28. A. Felner, Y. Shoshani, Y. Altshuler, A.M. Bruckstein, Multi-agent physical a* with large pheromones. J. Auton. Agents Multi-Agent Syst. 12(1), 3–34 (2006)

    Article  Google Scholar 

  29. J.O. Flynn, Lion and man: the general case. SIAM J. Control 12, 581–597 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. A.S. Goldstein, E.M. Reingold, The complexity of pursuit on a graph. Theor. Comput. Sci. 143, 93–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. R.P. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization (Wiley, New York, 1965). Reprinted by Dover Publications 1999

    MATH  Google Scholar 

  32. V. Isler, S. Kannan, S. Khanna, Randomized pursuit-evasion with local visibility. SIAM J. Discret. Math. 20, 26–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Kerr, D. Spears, Robotic simulation of gases for a surveillance task, in Intelligent Robots and Systems (IROS 2005) (2005), pp. 2905–2910

    Google Scholar 

  34. S. Koenig, Y. Liu, Terrain coverage with ant robots: a simulation study, in AGENTS’01 (2001)

    Google Scholar 

  35. S. Koenig, M. Likhachev, X. Sun, Speeding up moving-target search, in AAMAS ’07: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems (ACM, New York, NY, USA, 2007), pp. 1–8

    Google Scholar 

  36. S. Mastellone, D.M. Stipanovi, C.R. Graunke, K.A. Intlekofer, M.W. Spong, Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)

    Article  Google Scholar 

  37. T.W. Min, H.K. Yin, A decentralized approach for cooperative sweeping by multiple mobile robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (1998), pp. 380–385

    Google Scholar 

  38. K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint, M. Baum, Cooperative Control for Autonomous Air Vehicles, chapter Cooperative Control and Optimization (Kluwer Academic, Boston, 2002)

    Google Scholar 

  39. M. Polycarpou, Y. Yang, K. Passino, A cooperative search framework for distributed agents, in IEEE International Symposium on Intelligent, Control (2010), pp. 1–6

    Google Scholar 

  40. R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, A.S. Pentland, Augmented betweenness centrality for environmentally-aware traffic monitoring in transportation networks

    Google Scholar 

  41. E. Regev, Y. Altshuler, A.M. Bruckstein, The cooperative cleaners problem in stochastic dynamic environments (2012), arXiv:1201.6322

  42. I. Rekleitis, V. Lee-Shuey, A.P. Newz, H. Choset, Limited communication, multi-robot team based coverage, in IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  43. J. Svennebring, S. Koenig, Building terrain-covering ant robots: a feasibility study. Auton. Robots 16(3), 313–332 (2004)

    Article  Google Scholar 

  44. B.T. Sebastian, Efficient exploration in reinforcement learning — technical report cmu-cs-92-102. Technical report, Carnegie Mellon University (1992)

    Google Scholar 

  45. D. Vainsencher, A.M. Bruckstein, On isoperimetrically optimal polyforms. Theor. Computut. Sci. 406(1–2), 146–159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Varga, Matrix Iterative Analysis, 1st edn. (Prentice Hall, Upper Saddle River, 1962)

    Google Scholar 

  47. I.A. Wagner, Y. Altshuler, V. Yanovski, A.M. Bruckstein, Cooperative cleaners: a study in ant robotics. Int. J. Robot. Res. (IJRR) 27(1), 127–151 (2008)

    Article  Google Scholar 

  48. I.A. Wagner, A.M. Bruckstein, From ants to a(ge)nts: a special issue on ant–robotics. Ann. Math. Artif. Intell. Special Issue on Ant Robot. 31(1–4), 1–6 (2001)

    MATH  Google Scholar 

  49. I.A. Wagner, M. Lindenbaum, A.M. Bruckstein, Efficiently searching a graph by a smell-oriented vertex process. Ann. Math. Artif. Intell. 24, 211–223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. The Algebraic Eigenvalue Problem, vol. 87 (Clarendon Press, Oxford, 1965)

    Google Scholar 

  51. X. Zheng, S. Koenig, Robot coverage of terrain with non-uniform traversability, in In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (2007), pp. 3757–3764

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaniv Altshuler .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Altshuler, Y., Pentland, A., Bruckstein, A.M. (2018). Collaborative Patrolling Swarms in Stochastically Expanding Environments. In: Swarms and Network Intelligence in Search. Studies in Computational Intelligence, vol 729. Springer, Cham. https://doi.org/10.1007/978-3-319-63604-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63604-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63602-3

  • Online ISBN: 978-3-319-63604-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics